Organisatorisches

Die Vorlesung am Do 31.01. fällt aus

Organisatorisches

Die Vorlesung am Do 31.01. fällt aus — Lichtfest —

Organisatorisches

Die Vorlesung am Do 31.01. fällt aus — Lichtfest — viel Spaß

Skalarprodukt ist eine symmetrische positiv definite Bilinearform.

Skalarprodukt ist eine symmetrische positiv definite Bilinearform. Euklidscher Vektorraum ist ein Paar (V, \langle , \rangle) ,

Skalarprodukt ist eine symmetrische positiv definite Bilinearform. Euklidscher Vektorraum ist ein Paar (V, \langle , \rangle) , wobei V ein endlichdimensionaler \mathbb{R} -Vektorraum ist,

Skalarprodukt ist eine symmetrische positiv definite Bilinearform. Euklidscher Vektorraum ist ein Paar (V, \langle , \rangle) , wobei V ein endlichdimensionaler \mathbb{R} -Vektorraum ist, und \langle , \rangle ein Skalarprodukt ist.

Skalarprodukt ist eine symmetrische positiv definite Bilinearform. Euklidscher Vektorraum ist ein Paar (V, \langle , \rangle) , wobei V ein endlichdimensionaler \mathbb{R} -Vektorraum ist, und \langle , \rangle ein Skalarprodukt ist.

Satz 61 Wir können in V eine Basis B wählen sodass $\langle \ , \ \rangle$ Standard-Skalarprodukt ist:

Skalarprodukt ist eine symmetrische positiv definite Bilinearform. Euklidscher Vektorraum ist ein Paar (V, \langle , \rangle) , wobei V ein endlichdimensionaler \mathbb{R} -Vektorraum ist, und \langle , \rangle ein Skalarprodukt ist.

Satz 61 Wir können in V eine Basis B wählen sodass $\langle \; , \; \rangle$ Standard-Skalarprodukt ist: für die Vektoren x, y mit

Koordinatenvektoren
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 bzw. $\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ gilt:

Skalarprodukt ist eine symmetrische positiv definite Bilinearform. Euklidscher Vektorraum ist ein Paar (V, \langle , \rangle) , wobei V ein endlichdimensionaler \mathbb{R} -Vektorraum ist, und \langle , \rangle ein Skalarprodukt ist.

Satz 61 Wir können in V eine Basis B wählen sodass $\langle \; , \; \rangle$ Standard-Skalarprodukt ist: für die Vektoren x, y mit

$$\text{Koordinatenvektoren} \left(\begin{smallmatrix} x_1 \\ \vdots \\ x_n \end{smallmatrix} \right) \text{ bzw. } \left(\begin{smallmatrix} y_1 \\ \vdots \\ y_n \end{smallmatrix} \right) \text{ gilt:} \langle x,y \rangle = x_1 y_1 + \ldots + x_n y_n.$$

Def. 56

Def. 56 Sei (V, \langle , \rangle) ein Euklidscher Vektorraum.

Def. 56 Sei (V, \langle , \rangle) ein Euklidscher Vektorraum. Die Länge von $v \in V$ ist die Zahl $\sqrt{\langle v, v \rangle}$.

Def. 56 Sei (V, \langle , \rangle) ein Euklidscher Vektorraum. Die Länge von $v \in V$ ist die Zahl $\sqrt{\langle v, v \rangle}$. Bezeichnung: |v|.

Def. 56 Sei (V, \langle , \rangle) ein Euklidscher Vektorraum. Die Länge von $v \in V$ ist die Zahl $\sqrt{\langle v, v \rangle}$. Bezeichnung: |v|. Für je zwei Vektoren $u \neq 0, v \neq 0$

Def. 56 Sei (V, \langle , \rangle) ein Euklidscher Vektorraum. Die Länge von $v \in V$ ist die Zahl $\sqrt{\langle v, v \rangle}$. Bezeichnung: |v|. Für je zwei Vektoren $u \neq 0, v \neq 0$ heißt die Zahl arccos $\left(\frac{\langle u, v \rangle}{|u| |v|}\right) \in [0, \pi]$ der Winkel zwischen u und v.

Def. 56 Sei $(V, \langle \ , \ \rangle)$ ein Euklidscher Vektorraum. Die Länge von $v \in V$ ist die Zahl $\sqrt{\langle v, v \rangle}$. Bezeichnung: |v|. Für je zwei Vektoren $u \neq 0, v \neq 0$ heißt die Zahl $\operatorname{arccos}\left(\frac{\langle u, v \rangle}{|u| |v|}\right) \in [0, \pi]$ der Winkel zwischen u und v.

Erstes Ziel für heute: der Winkel ist wohldefiniert:

<ロト < 個 ト < 重 ト < 重 ト の Q ()

Def. 56 Sei $(V, \langle \ , \ \rangle)$ ein Euklidscher Vektorraum. Die Länge von $v \in V$ ist die Zahl $\sqrt{\langle v, v \rangle}$. Bezeichnung: |v|. Für je zwei Vektoren $u \neq 0, v \neq 0$ heißt die Zahl $\operatorname{arccos}\left(\frac{\langle u, v \rangle}{|u| |v|}\right) \in [0, \pi]$ der Winkel zwischen u und v.

Erstes Ziel für heute: der Winkel ist wohldefiniert: $-1 < \frac{\langle u,v \rangle}{|u|\,|v|} < 1.$

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u, v \rangle| \leq |u| |v|$ (für alle u, v aus dem Euklidschen Vektorraum

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u, v \rangle| \leq |u| |v|$ (für alle u, v aus dem Euklidschen Vektorraum (V, \langle , \rangle) .)

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u, v \rangle| \leq |u| |v|$ (für alle u, v aus dem Euklidschen Vektorraum (V, \langle , \rangle) .)Ferner gilt:

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u|\,|v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle|=|u|\,|v|$

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u, v \rangle| \leq |u| |v|$ (für alle u, v aus dem Euklidschen Vektorraum (V, \langle , \rangle) .)Ferner gilt: $|\langle u, v \rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind.

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u, v \rangle| \leq |u| |v|$ (für alle u, v aus dem Euklidschen Vektorraum (V, \langle , \rangle) .)Ferner gilt: $|\langle u, v \rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis.

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u|\,|v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle|=|u|\,|v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null.

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u|\,|v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle|=|u|\,|v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$.

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig,

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$,

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$.

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$. Angenommen, die Vektoren sind linear unabhängig.

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$.

Angenommen, die Vektoren sind linear unabhängig. Für alle $t \in \mathbb{R}$ gilt

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle|\leq |u|\,|v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle|=|u|\,|v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle|=|\langle \lambda v,v\rangle|=|\lambda||v|^2$. Angenommen, die Vektoren sind linear unabhängig. Für alle $t\in\mathbb{R}$ gilt $\langle u+tv,u+tv\rangle$

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u|\,|v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle|=|u|\,|v|\,$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle|=|\langle \lambda v,v\rangle|=|\lambda||v|^2$. Angenommen, die Vektoren sind linear unabhängig. Für alle $t\in\mathbb{R}$ gilt $\langle u+tv,u+tv\rangle$ $\stackrel{\text{Linearität}}{=}$

```
Lemma 37 (Cauchy-Schwarz-Ungleichung) |\langle u,v\rangle| \leq |u|\,|v| (für alle u,v aus dem Euklidschen Vektorraum (V,\langle\;,\;\rangle).)Ferner gilt: |\langle u,v\rangle|=|u|\,|v|\, g.d.w. die Vektoren linear abhängig sind. Beweis. Ist v=\vec{0}, so sind beide Seiten gleich Null. Sei v\neq\vec{0}. Sind die Vektoren linear abhängig, so ist u=\lambda v, und |\langle u,v\rangle|=|\langle \lambda v,v\rangle|=|\lambda||v|^2. Angenommen, die Vektoren sind linear unabhängig. Für alle t\in\mathbb{R} gilt \langle u+tv,u+tv\rangle Linearität \langle u,u+tv\rangle+t\langle v,u+tv\rangle Linearität \langle u,u+tv\rangle+t\langle v,u+tv\rangle Linearität
```

```
Lemma 37 (Cauchy-Schwarz-Ungleichung) |\langle u,v\rangle| \leq |u||v| (für alle u,v aus dem Euklidschen Vektorraum (V,\langle\;,\;\rangle).)Ferner gilt: |\langle u,v\rangle| = |u||v| g.d.w. die Vektoren linear abhängig sind. Beweis. Ist v=\vec{0}, so sind beide Seiten gleich Null. Sei v\neq\vec{0}. Sind die Vektoren linear abhängig, so ist u=\lambda v, und |\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda||v|^2. Angenommen, die Vektoren sind linear unabhängig. Für alle t\in\mathbb{R} gilt \langle u+tv,u+tv\rangle \stackrel{\text{Linearität}}{=} \langle u,u+tv\rangle + t\langle v,u+tv\rangle \stackrel{\text{Linearität}}{=} \langle u,u\rangle + t\langle u,v\rangle + t\langle v,u\rangle = \frac{2t\langle u,v\rangle \text{ weren Symmetrie}}{2}
```

```
Lemma 37 (Cauchy-Schwarz-Ungleichung) |\langle u,v\rangle| \leq |u|\,|v| (für alle u,v aus dem Euklidschen Vektorraum (V,\langle\;,\;\rangle).)Ferner gilt: |\langle u,v\rangle| = |u|\,|v|\, g.d.w. die Vektoren linear abhängig sind. Beweis. Ist v=\vec{0}, so sind beide Seiten gleich Null. Sei v\neq\vec{0}. Sind die Vektoren linear abhängig, so ist u=\lambda v, und |\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda||v|^2. Angenommen, die Vektoren sind linear unabhängig. Für alle t\in\mathbb{R} gilt \langle u+tv,u+tv\rangle \stackrel{\text{Linearität}}{=} \langle u,u+tv\rangle + t\langle v,u+tv\rangle \stackrel{\text{Linearität}}{=} \langle u,u\rangle + \underbrace{t\langle u,v\rangle + t\langle v,u\rangle}_{2t\langle u,v\rangle} + \underbrace{t\langle u,v\rangle + t\langle v,u\rangle}_{2t\langle u,v\rangle} = \underbrace{|u|^2}_{c}
```

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| \, |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| \, |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$. Angenommen, die Vektoren sind linear unabhängig. Für alle $t\in\mathbb{R}$ gilt $\langle u+tv,u+tv\rangle \stackrel{\text{Linearität}}{=} \langle u,u+tv\rangle + t\langle v,u+tv\rangle \stackrel{\text{Linearität}}{=} \langle u,u\rangle + t\langle u,v\rangle + t\langle v,u\rangle + t\langle v,v\rangle = \underbrace{|u|^2}_{2t\langle u,v\rangle} t$

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$. Angenommen, die Vektoren sind linear unabhängig. Für alle $t\in\mathbb{R}$ gilt $\langle u+tv,u+tv\rangle \stackrel{\text{Linearität}}{=} \langle u,u+tv\rangle + t\langle v,u+tv\rangle \stackrel{\text{Linearität}}{=} \langle u,v\rangle + t\langle v,u\rangle + t\langle v,v\rangle = |u|^2 + 2\langle u,v\rangle + t^2 |v|^2$.

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$. Angenommen, die Vektoren sind linear unabhängig. Für alle $t\in\mathbb{R}$ gilt $\langle u+tv,u+tv\rangle \stackrel{\text{Linearität}}{=} \langle u,u+tv\rangle + t\langle v,u+tv\rangle \stackrel{\text{Linearität}}{=} \langle u,u\rangle + t\langle u,v\rangle + t\langle v,u\rangle + t\langle v,v\rangle = \underbrace{|u|^2}_{c} + \underbrace{2\langle u,v\rangle}_{b} t + t^2\underbrace{|v|^2}_{a}$.

Dies ist ein quadratisches Polynom in t.

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| \, |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| \, |v| \, \text{g.d.w.}$ die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$. Angenommen, die Vektoren sind linear unabhängig. Für alle $t\in\mathbb{R}$ gilt $\langle u+tv,u+tv\rangle \stackrel{\text{Linearität}}{=} \langle u,u+tv\rangle + t\langle v,u+tv\rangle \stackrel{\text{Linearität}}{=} \langle u,u\rangle + t\langle u,v\rangle + t\langle v,u\rangle + t\langle v,v\rangle = \underbrace{|u|^2}_{2t\langle u,v\rangle} t+t^2\underbrace{|v|^2}_{a}.$

Dies ist ein quadratisches Polynom in t. Es hat keine Nullstelle,

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u, v \rangle| < |u| |v|$ (für alle u, v aus dem Euklidschen Vektorraum (V, \langle , \rangle) .) Ferner gilt: $|\langle u, v \rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v = \vec{0}$, so sind beide Seiten gleich Null. Sei $v \neq \vec{0}$. Sind die Vektoren linear abhängig, so ist $u = \lambda v$, und $|\langle u, v \rangle| = |\langle \lambda v, v \rangle| = |\lambda| |v|^2$. Angenommen, die Vektoren sind linear unabhängig. Für alle $t \in \mathbb{R}$ gilt $\langle u + tv, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t \langle v, u + tv \rangle \stackrel{\text{Linearität}}{=}$ $\langle u, u \rangle + \underbrace{t \langle u, v \rangle + t \langle v, u \rangle}_{\text{constant}} + t^2 \langle v, v \rangle = \underbrace{|u|^2}_{\text{constant}} + \underbrace{2 \langle u, v \rangle}_{\text{constant}} t + t^2 \underbrace{|v|^2}_{\text{constant}}.$ 2t(u.v) wegen Symmetrie Dies ist ein quadratisches Polynom in t. Es hat keine Nullstelle, da

Dies ist ein quadratisches Polynom in t. Es hat keine Nullstelle, da $\langle u+tv, u+tv \rangle$ gleich Null sein kann nur falls u=-tv,

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$.

Angenommen, die Vektoren sind linear unabhängig. Für alle
$$t \in \mathbb{R}$$
 gilt $\langle u + tv, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t \langle v, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u \rangle + t \langle v, u \rangle = \underbrace{|u|^2}_{c} + \underbrace{2 \langle u, v \rangle}_{b} t + t^2 \underbrace{|v|^2}_{a}.$

Dies ist ein quadratisches Polynom in t. Es hat keine Nullstelle, da $\langle u+tv,u+tv\rangle$ gleich Null sein kann nur falls u=-tv, also falls u,v linear abhängig sind.

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u|\,|v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle|=|u|\,|v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle|=|\langle \lambda v,v\rangle|=|\lambda||v|^2$.

Angenommen, die Vektoren sind linear unabhängig. Für alle
$$t \in \mathbb{R}$$
 gilt $\langle u + tv, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t \langle v, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t \langle v, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u \rangle + t \langle u, v \rangle + t \langle v, u \rangle + t \langle v, v \rangle = \underbrace{|u|^2}_{c} + \underbrace{2\langle u, v \rangle}_{b} t + t^2 \underbrace{|v|^2}_{a}.$

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$.

Angenommen, die Vektoren sind linear unabhängig. Für alle
$$t \in \mathbb{R}$$
 gilt $\langle u + tv, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t \langle v, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u \rangle + t \langle v, v \rangle = \underbrace{|u|^2}_{c} + \underbrace{2 \langle u, v \rangle}_{b} t + t^2 \underbrace{|v|^2}_{a}.$

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| \, |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| \, |v| \, \text{g.d.w.}$ die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$.

Angenommen, die Vektoren sind linear unabhängig. Für alle $t \in \mathbb{R}$ gilt $\langle u + tv, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t \langle v, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u \rangle + t \langle v, v \rangle = \underbrace{|u|^2}_{c} + \underbrace{2\langle u, v \rangle}_{b} t + t^2 \underbrace{|v|^2}_{a}.$

$$\mathcal{D} =$$

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$.

Angenommen, die Vektoren sind linear unabhängig. Für alle $t \in \mathbb{R}$ gilt $\langle u + tv, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t \langle v, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u \rangle + t^2 \langle v, v \rangle = \underbrace{|u|^2}_{t} + \underbrace{2 \langle u, v \rangle}_{t} t + t^2 \underbrace{|v|^2}_{t}.$

$$\mathcal{D} = \left(\frac{b}{2}\right)^2 - ac =$$

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$.

Angenommen, die Vektoren sind linear unabhängig. Für alle $t \in \mathbb{R}$ gilt $\langle u + tv, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t \langle v, u + tv \rangle \stackrel{\text{Linearität}}{=}$

$$\frac{\langle u, u \rangle + t \langle v, u \rangle + t \langle v, u \rangle}{\langle u, u \rangle + t \langle v, u \rangle} + t^2 \langle v, v \rangle = \underbrace{|u|^2}_{c} + \underbrace{2 \langle u, v \rangle}_{b} t + t^2 \underbrace{|v|^2}_{a}.$$

$$\mathcal{D} = \left(\frac{b}{2}\right)^2 - ac = \langle u, v \rangle^2 - |v|^2 |u|^2 \le 0.$$

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u, v \rangle| < |u| |v|$ (für alle u, v aus dem Euklidschen Vektorraum (V, \langle , \rangle) .) Ferner gilt: $|\langle u, v \rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v = \vec{0}$, so sind beide Seiten gleich Null. Sei $v \neq \vec{0}$. Sind die Vektoren linear abhängig, so ist $u = \lambda v$, und

 $|\langle u, v \rangle| = |\langle \lambda v, v \rangle| = |\lambda| |v|^2$.

Angenommen, die Vektoren sind linear unabhängig. Für alle $t \in \mathbb{R}$ gilt $\langle u + tv, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t \langle v, u + tv \rangle \stackrel{\text{Linearität}}{=}$ $\frac{\langle u, u \rangle + \underbrace{t\langle u, v \rangle + t\langle v, u \rangle}_{t} + t^2 \langle v, v \rangle = \underbrace{|u|^2}_{t} + \underbrace{2\langle u, v \rangle}_{t} t + t^2 \underbrace{|v|^2}_{t}.$

2t(u.v) wegen Symmetrie

Dies ist ein quadratisches Polynom in t. Es hat keine Nullstelle, da $\langle u + tv, u + tv \rangle$ gleich Null sein kann nur falls u = -tv, also falls u, v

linear abhängig sind. Da das Polynom höchstens eine Nullstelle hat, ist die Diskriminante nichtpositiv, also

$$\mathcal{D} = \left(\frac{b}{2}\right)^2 - ac = \langle u, v \rangle^2 - |v|^2 |u|^2 \le 0. \quad \text{Dann ist } |\langle u, v \rangle| \le |v| |u|.$$

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u, v \rangle| < |u| |v|$ (für alle u, v aus dem Euklidschen Vektorraum (V, \langle , \rangle) .) Ferner gilt: $|\langle u, v \rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v = \vec{0}$, so sind beide Seiten gleich Null. Sei $v \neq \vec{0}$. Sind die Vektoren linear abhängig, so ist $u = \lambda v$, und

 $|\langle u, v \rangle| = |\langle \lambda v, v \rangle| = |\lambda| |v|^2$.

Angenommen, die Vektoren sind linear unabhängig. Für alle $t \in \mathbb{R}$ gilt $\langle u + tv, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t \langle v, u + tv \rangle \stackrel{\text{Linearität}}{=}$ $\frac{\langle u, u \rangle + \underbrace{t\langle u, v \rangle + t\langle v, u \rangle}_{t} + t^2 \langle v, v \rangle = \underbrace{|u|^2}_{t} + \underbrace{2\langle u, v \rangle}_{t} t + t^2 \underbrace{|v|^2}_{t}.$

2t(u.v) wegen Symmetrie

Dies ist ein quadratisches Polynom in t. Es hat keine Nullstelle, da $\langle u + tv, u + tv \rangle$ gleich Null sein kann nur falls u = -tv, also falls u, v

linear abhängig sind. Da das Polynom höchstens eine Nullstelle hat, ist die Diskriminante nichtpositiv, also

$$\mathcal{D} = \left(\frac{b}{2}\right)^2 - ac = \langle u, v \rangle^2 - |v|^2 |u|^2 \le 0. \quad \text{Dann ist } |\langle u, v \rangle| \le |v| |u|.$$

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$.

Angenommen, die Vektoren sind linear unabhängig. Für alle $t \in \mathbb{R}$ gilt $\langle u + tv, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t \langle v, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle$

$$\frac{\langle u + tv, u + tv \rangle}{\langle u, u \rangle} - \frac{\langle u, u + tv \rangle}{\langle tv, u \rangle} + \frac{\langle u, v \rangle}{\langle tv, v \rangle} + \frac{\langle u$$

$$\mathcal{D} = \left(\frac{b}{2}\right)^2 - ac = \langle u, v \rangle^2 - |v|^2 |u|^2 \le 0. \quad \text{Dann ist } |\langle u, v \rangle| \le |v| |u|. \quad \Box$$

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$.

Angenommen, die Vektoren sind linear unabhängig. Für alle $t \in \mathbb{R}$ gilt $\langle u + tv, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t \langle v, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t^2 \langle v, v \rangle = \underbrace{|u|^2}_{c} + \underbrace{2\langle u, v \rangle}_{b} t + t^2 \underbrace{|v|^2}_{a}.$

$$\mathcal{D} = \left(\frac{b}{2}\right)^2 - ac = \langle u, v \rangle^2 - |v|^2 |u|^2 \le 0. \quad \text{Dann ist } |\langle u, v \rangle| \le |v| |u|. \quad \Box$$

Lemma 37 (Cauchy-Schwarz-Ungleichung) $|\langle u,v\rangle| \leq |u| |v|$ (für alle u,v aus dem Euklidschen Vektorraum $(V,\langle\;,\;\rangle)$.)Ferner gilt: $|\langle u,v\rangle| = |u| |v|$ g.d.w. die Vektoren linear abhängig sind. Beweis. Ist $v=\vec{0}$, so sind beide Seiten gleich Null. Sei $v\neq\vec{0}$. Sind die Vektoren linear abhängig, so ist $u=\lambda v$, und $|\langle u,v\rangle| = |\langle \lambda v,v\rangle| = |\lambda| |v|^2$.

Angenommen, die Vektoren sind linear unabhängig. Für alle $t \in \mathbb{R}$ gilt $\langle u + tv, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t \langle v, u + tv \rangle \stackrel{\text{Linearität}}{=} \langle u, u + tv \rangle + t^2 \langle v, v \rangle = \underbrace{|u|^2}_{c} + \underbrace{2\langle u, v \rangle}_{b} t + t^2 \underbrace{|v|^2}_{a}.$

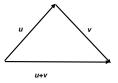
$$\mathcal{D} = \left(\frac{b}{2}\right)^2 - ac = \langle u, v \rangle^2 - |v|^2 |u|^2 \le 0. \quad \text{Dann ist } |\langle u, v \rangle| \le |v| |u|. \quad \Box$$

Dreiecksungleichung:

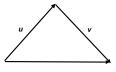
Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V.

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.

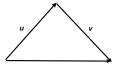


Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.



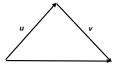
$$(|u+v|)^2 =$$

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.



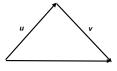
$$(|u+v|)^2 = \langle u+v, u+v \rangle$$

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u, v \in V$ gilt: $|u + v| \le |u| + |v|$.



$$(|u+v|)^2 = \langle u+v, u+v \rangle \overset{\text{Wie im Beweis Lem. 37}}{=} |u|^2 + 2\langle u, v \rangle + |v|^2$$

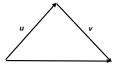
Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.



____u+v

$$(|u+v|)^2 = \langle u+v, u+v \rangle \stackrel{\text{Wie im Beweis Lem. 37}}{=} |u|^2 + 2\langle u, v \rangle + |v|^2 (|u|+|v|)^2 = |u|^2 + 2|u||v|+|v|^2.$$

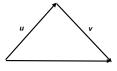
Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u, v \in V$ gilt: $|u + v| \le |u| + |v|$.



u+v

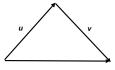
$$\begin{split} (|u+v|)^2 &= \langle u+v, u+v \rangle \overset{\rm Wie \ im \ Beweis \ Lem. \ 37}{=} |u|^2 + 2 \langle u,v \rangle + |v|^2 \\ (|u|+|v|)^2 &= |u|^2 + 2|u||v| + |v|^2. \ \ \text{Da \ nach \ Lemma} \ \ 37 \ \langle u,v \rangle \leq |u||v|, \end{split}$$

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.



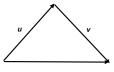
$$\begin{array}{l} (|u+v|)^2 = \langle u+v, u+v \rangle \overset{\text{Wie im Beweis Lem. } 37}{=} |u|^2 + 2\langle u, v \rangle + |v|^2 \\ (|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2. \quad \text{Da nach Lemma } 37 \ \langle u, v \rangle \leq |u||v|, \\ \text{ist } (|u+v|)^2 \leq (|u|+|v|)^2 \end{array}$$

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.



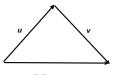
$$\begin{aligned} &(|u+v|)^2 = \langle u+v, u+v \rangle \overset{\text{Wie im Beweis Lem. 37}}{=} |u|^2 + 2\langle u,v \rangle + |v|^2 \\ &(|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2. \quad \text{Da nach Lemma 37 } \langle u,v \rangle \leq |u||v|, \\ &\text{ist } (|u+v|)^2 \leq (|u|+|v|)^2 \quad \text{und deswegen } |u+v| \leq |u|+|v|. \end{aligned}$$

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.



$$(|u+v|)^2 = \langle u+v, u+v \rangle \stackrel{\text{Wie im Beweis Lem. 37}}{=} |u|^2 + 2\langle u, v \rangle + |v|^2$$
 $(|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2$. Da nach Lemma 37 $\langle u, v \rangle \leq |u||v|$, ist $(|u+v|)^2 \leq (|u|+|v|)^2$ und deswegen $|u+v| \leq |u|+|v|$.

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.

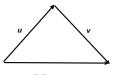


Beweis.

$$(|u+v|)^2 = \langle u+v, u+v \rangle \stackrel{\text{Wie im Beweis Lem. 37}}{=} |u|^2 + 2\langle u, v \rangle + |v|^2$$
 $(|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2$. Da nach Lemma 37 $\langle u, v \rangle \leq |u||v|$, ist $(|u+v|)^2 \leq (|u|+|v|)^2$ und deswegen $|u+v| \leq |u|+|v|$.

Parallelogrammgleichung:

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.

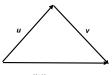


Beweis.

$$(|u+v|)^2 = \langle u+v, u+v \rangle \stackrel{\text{Wie im Beweis Lem. 37}}{=} |u|^2 + 2\langle u, v \rangle + |v|^2$$
 $(|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2$. Da nach Lemma 37 $\langle u, v \rangle \leq |u||v|$, ist $(|u+v|)^2 \leq (|u|+|v|)^2$ und deswegen $|u+v| \leq |u|+|v|$.

Parallelogrammgleichung:

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.

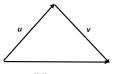


Beweis.

$$(|u+v|)^2 = \langle u+v, u+v \rangle \stackrel{\text{Wie im Beweis Lem. 37}}{=} |u|^2 + 2\langle u, v \rangle + |v|^2$$
 $(|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2$. Da nach Lemma 37 $\langle u, v \rangle \leq |u||v|$, ist $(|u+v|)^2 \leq (|u|+|v|)^2$ und deswegen $|u+v| \leq |u|+|v|$.

Parallelogrammgleichung:

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.

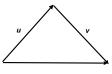


Beweis.

$$(|u+v|)^2 = \langle u+v, u+v \rangle$$
 Wie im Beweis Lem. 37 $|u|^2 + 2\langle u, v \rangle + |v|^2$ $(|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2$. Da nach Lemma 37 $\langle u, v \rangle \leq |u||v|$, ist $(|u+v|)^2 \leq (|u|+|v|)^2$ und deswegen $|u+v| \leq |u|+|v|$.

Parallelogrammgleichung: Für jede $u, v \in V$ gilt:

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u, v \in V$ gilt: $|u + v| \le |u| + |v|$.

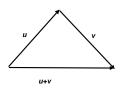


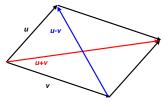
Beweis.

$$(|u+v|)^2 = \langle u+v, u+v \rangle$$
 Wie im Beweis Lem. 37 $|u|^2 + 2\langle u, v \rangle + |v|^2$ $(|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2$. Da nach Lemma 37 $\langle u, v \rangle \le |u||v|$, ist $(|u+v|)^2 \le (|u|+|v|)^2$ und deswegen $|u+v| \le |u|+|v|$.

Parallelogrammgleichung: Für jede $u, v \in V$ gilt: $|u + v|^2 + |u - v|^2 = 2(|u|^2 + |v|^2)$.

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.



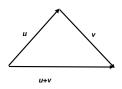


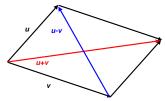
Beweis.

$$(|u+v|)^2 = \langle u+v, u+v \rangle \overset{\text{Wie im Beweis Lem. 37}}{=} |u|^2 + 2\langle u, v \rangle + |v|^2 \\ (|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2. \quad \text{Da nach Lemma 37} \ \langle u, v \rangle \leq |u||v|, \\ \text{ist } (|u+v|)^2 \leq (|u|+|v|)^2 \quad \text{und deswegen } |u+v| \leq |u|+|v|.$$

Parallelogrammgleichung: Für jede $u, v \in V$ gilt: $|u + v|^2 + |u - v|^2 = 2(|u|^2 + |v|^2)$.

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.





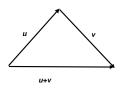
Beweis.

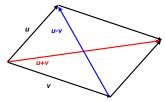
$$(|u+v|)^2 = \langle u+v, u+v \rangle \overset{\text{Wie im Beweis Lem. 37}}{=} |u|^2 + 2\langle u, v \rangle + |v|^2 \\ (|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2. \quad \text{Da nach Lemma 37} \ \langle u, v \rangle \leq |u||v|, \\ \text{ist } (|u+v|)^2 \leq (|u|+|v|)^2 \quad \text{und deswegen } |u+v| \leq |u|+|v|.$$

Parallelogrammgleichung: Für jede $u, v \in V$ gilt:

$$|u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2).$$

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.





Beweis.

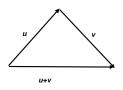
$$(|u+v|)^2 = \langle u+v, u+v \rangle$$
 Wie im Beweis Lem. 37 $|u|^2 + 2\langle u, v \rangle + |v|^2$ $(|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2$. Da nach Lemma 37 $\langle u, v \rangle \leq |u||v|$, ist $(|u+v|)^2 \leq (|u|+|v|)^2$ und deswegen $|u+v| \leq |u|+|v|$.

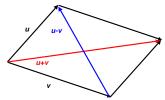
Parallelogrammgleichung: Für jede $u, v \in V$ gilt:

$$|u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2).$$

$$|u+v|^2 + |u-v|^2$$

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.





Beweis.

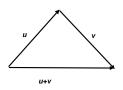
$$(|u+v|)^2 = \langle u+v, u+v \rangle \overset{\text{Wie im Beweis Lem. 37}}{=} |u|^2 + 2\langle u, v \rangle + |v|^2 \\ (|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2. \quad \text{Da nach Lemma 37} \ \langle u, v \rangle \leq |u||v|, \\ \text{ist } (|u+v|)^2 \leq (|u|+|v|)^2 \quad \text{und deswegen } |u+v| \leq |u|+|v|.$$

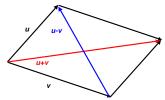
Parallelogrammgleichung: Für jede $u, v \in V$ gilt:

$$|u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2).$$

$$|u+v|^2 + |u-v|^2 = \langle u+v, u+v \rangle + \langle u-v, u-v \rangle$$

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u, v \in V$ gilt: $|u + v| \le |u| + |v|$.





Beweis.

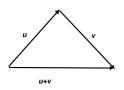
$$(|u+v|)^2 = \langle u+v, u+v \rangle$$
 Wie im Beweis Lem. 37 $|u|^2 + 2\langle u, v \rangle + |v|^2$ $(|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2$. Da nach Lemma 37 $\langle u, v \rangle \leq |u||v|$, ist $(|u+v|)^2 \leq (|u|+|v|)^2$ und deswegen $|u+v| \leq |u|+|v|$.

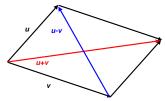
Parallelogrammgleichung: Für jede $u, v \in V$ gilt:

$$|u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2).$$

$$|u+v|^2 + |u-v|^2 = \langle u+v, u+v \rangle + \langle u-v, u-v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle + \langle$$

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.





Beweis.

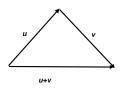
$$(|u+v|)^2 = \langle u+v, u+v \rangle$$
 Wie im Beweis Lem. 37 $|u|^2 + 2\langle u, v \rangle + |v|^2$ $(|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2$. Da nach Lemma 37 $\langle u, v \rangle \leq |u||v|$, ist $(|u+v|)^2 \leq (|u|+|v|)^2$ und deswegen $|u+v| \leq |u|+|v|$.

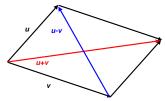
Parallelogrammgleichung: Für jede $u, v \in V$ gilt:

$$|u + v|^2 + |u - v|^2 = 2(|u|^2 + |v|^2).$$

$$|u+v|^2 + |u-v|^2 = \langle u+v, u+v \rangle + \langle u-v, u-v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle + \langle u, u \rangle - 2\langle u, v \rangle + \langle v, v \rangle$$

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.





Beweis.

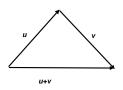
$$(|u+v|)^2 = \langle u+v, u+v \rangle$$
 Wie im Beweis Lem. 37 $|u|^2 + 2\langle u, v \rangle + |v|^2$ $(|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2$. Da nach Lemma 37 $\langle u, v \rangle \leq |u||v|$, ist $(|u+v|)^2 \leq (|u|+|v|)^2$ und deswegen $|u+v| \leq |u|+|v|$.

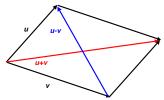
Parallelogrammgleichung: Für jede $u, v \in V$ gilt:

$$|u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2).$$

$$|u+v|^2 + |u-v|^2 = \langle u+v, u+v \rangle + \langle u-v, u-v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle + \langle u, u \rangle - 2\langle u, v \rangle + \langle v, v \rangle = 2(\langle u, u \rangle + \langle v, v \rangle)$$

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.





Beweis.

$$(|u+v|)^2 = \langle u+v, u+v \rangle \stackrel{\text{Wie im Beweis Lem. 37}}{=} |u|^2 + 2\langle u, v \rangle + |v|^2$$

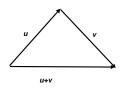
 $(|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2$. Da nach Lemma 37 $\langle u, v \rangle \leq |u||v|$, ist $(|u+v|)^2 \leq (|u|+|v|)^2$ und deswegen $|u+v| \leq |u|+|v|$.

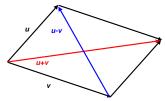
Parallelogrammgleichung: Für jede $u, v \in V$ gilt:

$$|u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2).$$

$$|u+v|^2 + |u-v|^2 = \langle u+v, u+v \rangle + \langle u-v, u-v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle + \langle u, u \rangle - 2\langle u, v \rangle + \langle v, v \rangle = 2(\langle u, u \rangle + \langle v, v \rangle) = 2(|u|^2 + |v|^2).$$

Dreiecksungleichung: Sei $\langle \ , \ \rangle$ ein Skalarprodukt auf V. Dann für jede $u,v\in V$ gilt: $|u+v|\leq |u|+|v|$.





Beweis.

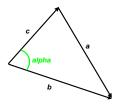
$$(|u+v|)^2 = \langle u+v, u+v \rangle \stackrel{\text{Wie im Beweis Lem. 37}}{=} |u|^2 + 2\langle u, v \rangle + |v|^2$$
 $(|u|+|v|)^2 = |u|^2 + 2|u||v| + |v|^2$. Da nach Lemma 37 $\langle u, v \rangle \leq |u||v|$, ist $(|u+v|)^2 \leq (|u|+|v|)^2$ und deswegen $|u+v| \leq |u|+|v|$.

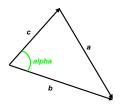
Parallelogrammgleichung: Für jede $u, v \in V$ gilt:

$$|u + v|^2 + |u - v|^2 = 2(|u|^2 + |v|^2).$$

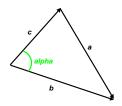
$$|u+v|^2 + |u-v|^2 = \langle u+v, u+v \rangle + \langle u-v, u-v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle + \langle u, u \rangle - 2\langle u, v \rangle + \langle v, v \rangle = 2(\langle u, u \rangle + \langle v, v \rangle) = 2(|u|^2 + |v|^2). \quad \Box$$

Cosinussatz

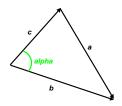




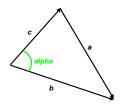
$$|\vec{a}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos(alpha).$$



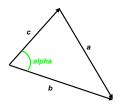
Ist
$$|\vec{a}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos(alpha)$$
. Beweis:



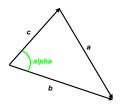
Ist
$$|\vec{a}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos(alpha)$$
.
Beweis: $\vec{a} + \vec{b}$



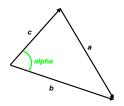
Ist
$$|\vec{a}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos(alpha)$$
.
Beweis: $\vec{a} + \vec{b} = \vec{c}$,



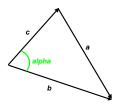
Ist
$$|\vec{a}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos(alpha)$$
.
Beweis: $\vec{a} + \vec{b} = \vec{c}$, also $\vec{a} = \vec{c} - \vec{b}$.



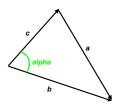
Ist
$$|\vec{a}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos(alpha)$$
.
Beweis: $\vec{a} + \vec{b} = \vec{c}$, also $\vec{a} = \vec{c} - \vec{b}$.
Dann ist $|\vec{a}|^2 =$



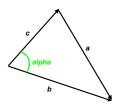
Ist
$$|\vec{a}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos(alpha)$$
. Beweis: $\vec{a} + \vec{b} = \vec{c}$, also $\vec{a} = \vec{c} - \vec{b}$. Dann ist $|\vec{a}|^2 = \langle \vec{a}, \vec{a} \rangle = \langle \vec{c} - \vec{b}, \vec{c} - \vec{b} \rangle$



Ist
$$|\vec{a}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos(alpha)$$
.
Beweis: $\vec{a} + \vec{b} = \vec{c}$, also $\vec{a} = \vec{c} - \vec{b}$.
Dann ist $|\vec{a}|^2 = \langle \vec{a}, \vec{a} \rangle = \langle \vec{c} - \vec{b}, \vec{c} - \vec{b} \rangle = \langle \vec{c}, \vec{c} \rangle - 2\langle \vec{b}, \vec{c} \rangle + \langle \vec{b}, \vec{b} \rangle$



Ist
$$|\vec{a}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos(alpha)$$
.
Beweis: $\vec{a} + \vec{b} = \vec{c}$, also $\vec{a} = \vec{c} - \vec{b}$.
Dann ist $|\vec{a}|^2 = \langle \vec{a}, \vec{a} \rangle = \langle \vec{c} - \vec{b}, \vec{c} - \vec{b} \rangle = \langle \vec{c}, \vec{c} \rangle - 2\langle \vec{b}, \vec{c} \rangle + \langle \vec{b}, \vec{b} \rangle = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos(alpha)$.



Ist
$$|\vec{a}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos(alpha)$$
.
Beweis: $\vec{a} + \vec{b} = \vec{c}$, also $\vec{a} = \vec{c} - \vec{b}$.
Dann ist $|\vec{a}|^2 = \langle \vec{a}, \vec{a} \rangle = \langle \vec{c} - \vec{b}, \vec{c} - \vec{b} \rangle = \langle \vec{c}, \vec{c} \rangle - 2\langle \vec{b}, \vec{c} \rangle + \langle \vec{b}, \vec{b} \rangle = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos(alpha)$.

Def. 57

Def. 57 Ein Endomorphismus $f: V \to V$ eines Euklidschen Vektorraums (V, \langle , \rangle)

Def. 57 Ein Endomorphismus $f: V \to V$ eines Euklidschen Vektorraums (V, \langle , \rangle) f heißt orthogonal, falls für alle u, v inV

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel:

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt:

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|,

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich.

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich. Tatsächlich,

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich.

Tatsächlich, $|f(u)| \stackrel{\text{Def. } 56}{=}$

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich. Tatsächlich, $|f(u)| \stackrel{\mathrm{Def. 56}}{=} \sqrt{\langle f(u), f(u) \rangle}$

4 D > 4 P > 4 B > 4 B > 9 Q P

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich.

Tatsächlich,
$$|f(u)| \stackrel{\text{Def. } 56}{=} \sqrt{\langle f(u), f(u) \rangle} \stackrel{\text{Def. } 57}{=}$$

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich.

Tatsächlich,
$$|f(u)| \stackrel{\text{Def. } 56}{=} \sqrt{\langle f(u), f(u) \rangle} \stackrel{\text{Def. } 57}{=} \sqrt{\langle u, u \rangle}$$

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich.

Tatsächlich,
$$|f(u)| \stackrel{\text{Def. }56}{=} \sqrt{\langle f(u), f(u) \rangle} \stackrel{\text{Def. }57}{=} \sqrt{\langle u, u \rangle} \stackrel{\text{Def. }57}{=}$$

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich.

$$\mathsf{Tats\"{a}chlich,} \ |f(u)| \stackrel{\mathrm{Def.}\ 56}{=} \sqrt{\langle f(u), f(u)\rangle} \stackrel{\mathrm{Def.}\ 57}{=} \sqrt{\langle u, u\rangle} \stackrel{\mathrm{Def.}\ 57}{=} |u|;$$

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich. Tatsächlich, $|f(u)| \stackrel{\text{Def.}}{=} {}^{56} \sqrt{\langle f(u), f(u) \rangle} \stackrel{\text{Def.}}{=} {}^{57} \sqrt{\langle u, u \rangle} \stackrel{\text{Def.}}{=} {}^{57} |u|$; Der Winkel zwischen f(u) und f(v) ist nach Definition 56

Der Winkel zwischen f(u) und f(v) ist nach Definition 56

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich. Tatsächlich, $|f(u)| \stackrel{\mathrm{Def.}}{=} {}^{56} \sqrt{\langle f(u), f(u) \rangle} \stackrel{\mathrm{Def.}}{=} {}^{57} \sqrt{\langle u, u \rangle} \stackrel{\mathrm{Def.}}{=} {}^{57} |u|$; Der Winkel zwischen f(u) und f(v) ist nach Definition 56 $\operatorname{arccos}\left(\frac{\langle f(u), f(v) \rangle}{|f(u)||f(v)|}\right)$

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich. Tatsächlich, $|f(u)| \stackrel{\mathrm{Def.}}{=} {}^{56} \sqrt{\langle f(u), f(u) \rangle} \stackrel{\mathrm{Def.}}{=} {}^{57} \sqrt{\langle u, u \rangle} \stackrel{\mathrm{Def.}}{=} {}^{57} |u|$; Der Winkel zwischen f(u) und f(v) ist nach Definition 56 $\operatorname{arccos}\left(\frac{\langle f(u), f(v) \rangle}{|f(u)||f(v)|}\right) \stackrel{\mathrm{Def.}}{=} {}^{56}$

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich. Tatsächlich, $|f(u)| \stackrel{\mathrm{Def.}}{=} {}^{56} \sqrt{\langle f(u), f(u) \rangle} \stackrel{\mathrm{Def.}}{=} {}^{57} \sqrt{\langle u, u \rangle} \stackrel{\mathrm{Def.}}{=} {}^{57} |u|$; Der Winkel zwischen f(u) und f(v) ist nach Definition 56 $\operatorname{arccos}\left(\frac{\langle f(u), f(v) \rangle}{|f(u)||f(v)|}\right) \stackrel{\mathrm{Def.}}{=} {}^{56} \operatorname{arccos}\left(\frac{\langle u, v \rangle}{|u||v|}\right)$

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich. Tatsächlich, $|f(u)| \stackrel{\mathrm{Def.}}{=} {}^{56} \sqrt{\langle f(u), f(u) \rangle} \stackrel{\mathrm{Def.}}{=} {}^{57} \sqrt{\langle u, u \rangle} \stackrel{\mathrm{Def.}}{=} {}^{57} |u|$; Der Winkel zwischen f(u) und f(v) ist nach Definition 56 $\operatorname{arccos}\left(\frac{\langle f(u), f(v) \rangle}{|f(u)||f(v)|}\right) \stackrel{\mathrm{Def.}}{=} {}^{56} \operatorname{arccos}\left(\frac{\langle u, v \rangle}{|u||v|}\right)$ und ist der Winkel zwischen u und v.

Bemerkung Orthogonale Abbildungen erhalten die Längen und die Winkel: d.h. für alle $u, v \in V$ gilt: |f(u)| = |u|, Winkel zwischen u und v und Winkel zwischen f(u) und f(v) sind gleich. Tatsächlich, $|f(u)| \stackrel{\mathrm{Def.}}{=} {}^{56} \sqrt{\langle f(u), f(u) \rangle} \stackrel{\mathrm{Def.}}{=} {}^{57} \sqrt{\langle u, u \rangle} \stackrel{\mathrm{Def.}}{=} {}^{57} |u|$; Der Winkel zwischen f(u) und f(v) ist nach Definition 56 $\operatorname{arccos}\left(\frac{\langle f(u), f(v) \rangle}{|f(u)||f(v)|}\right) \stackrel{\mathrm{Def.}}{=} {}^{56} \operatorname{arccos}\left(\frac{\langle u, v \rangle}{|u||v|}\right)$ und ist der Winkel zwischen u und v.

Satz 63

Satz 63 Sei f ein Endomorphismus eines Euklidschen Vektorraums $(V, \langle \ , \ \rangle)$,

Satz 63 Sei f ein Endomorphismus eines Euklidschen Vektorraums (V, \langle , \rangle) , so dass für jedes $v \in V$ gilt: |f(v)| = |v|.

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Satz 63 Sei f ein Endomorphismus eines Euklidschen Vektorraums $(V, \langle \ , \ \rangle)$, so dass für jedes $v \in V$ gilt: |f(v)| = |v|. Dann gilt: f ist eine orthogonale Abbildung In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal Beweis.

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Satz 63 Sei f ein Endomorphismus eines Euklidschen Vektorraums (V, \langle , \rangle) , so dass für jedes $v \in V$ gilt: |f(v)| = |v|. Dann gilt: f ist eine orthogonale Abbildung

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$.

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal **Beweis.** Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$. Betrachte $|f(u+v)|^2$. Wir haben

Satz 63 Sei f ein Endomorphismus eines Euklidschen Vektorraums $(V, \langle \ , \ \rangle)$, so dass für jedes $v \in V$ gilt: |f(v)| = |v|. Dann gilt: f ist eine orthogonale Abbildung

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben $|f(u+v)|^2 = |f(u+v)|^2$

Satz 63 Sei f ein Endomorphismus eines Euklidschen Vektorraums (V, \langle , \rangle) , so dass für jedes $v \in V$ gilt: |f(v)| = |v|. Dann gilt: f ist eine orthogonale Abbildung

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle$$

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal **Beweis.** Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=}$$

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

 $\stackrel{\text{Symmetrie}}{=}$

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal **Beweis.** Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

$$\stackrel{\text{Symmetrie}}{=} \langle f(u), f(u) \rangle + 2 \langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal **Beweis.** Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie =
$$\langle f(u), f(u) \rangle + 2 \langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$

= $|f(u)|^2 + 2 \langle f(u), f(v) \rangle + |f(v)|^2$

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie =
$$\langle f(u), f(u) \rangle + 2 \langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$

= $|f(u)|^2 + 2 \langle f(u), f(v) \rangle + |f(v)|^2$

Voraussetzungen

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal **Beweis.** Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie
$$= \langle f(u), f(u) \rangle + 2\langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$

$$= |f(u)|^2 + 2\langle f(u), f(v) \rangle + |f(v)|^2$$
Voraussetzungen
$$= |u|^2 + 2\langle f(u), f(v) \rangle + |v|^2$$

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie
$$= \langle f(u), f(u) \rangle + 2\langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$

$$= |f(u)|^2 + 2\langle f(u), f(v) \rangle + |f(v)|^2$$
Orange Strungen and Control of the Control of the

Voraussetzungen $|\mathbf{u}|^2 + 2\langle f(\mathbf{u}), f(\mathbf{v})\rangle + |\mathbf{v}|^2$

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie =
$$\langle f(u), f(u) \rangle + 2 \langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$

= $|f(u)|^2 + 2 \langle f(u), f(v) \rangle + |f(v)|^2$

 $\stackrel{\text{Voraussetzungen}}{=} |u|^2 + 2\langle f(u), f(v) \rangle + |v|^2$

$$|f(u+v)|^2 =$$

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie
$$= \langle f(u), f(u) \rangle + 2\langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$

$$= |f(u)|^2 + 2\langle f(u), f(v) \rangle + |f(v)|^2$$

 $\stackrel{\text{Voraussetzungen}}{=} |u|^2 + 2\langle f(u), f(v) \rangle + |v|^2$

$$|f(u+v)|^2 = |u+v|^2$$

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie
$$= \langle f(u), f(u) \rangle + 2\langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$

$$= |f(u)|^2 + 2\langle f(u), f(v) \rangle + |f(v)|^2$$

Voraussetzungen $|u|^2 + 2\langle f(u), f(v) \rangle + |v|^2$

Anderer Weg
$$|f(u+v)|^2$$
 auszurechnen:
 $|f(u+v)|^2 = |u+v|^2 = \langle u+v, u+v \rangle$

◆ロト 4周ト 4 三ト 4 三 り へ ○

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie =
$$\langle f(u), f(u) \rangle + 2 \langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$

= $|f(u)|^2 + 2 \langle f(u), f(v) \rangle + |f(v)|^2$

 $\stackrel{\text{Voraussetzungen}}{=} |u|^2 + 2\langle f(u), f(v) \rangle + |v|^2$

$$|f(u+v)|^2 = |u+v|^2 = \langle u+v, u+v \rangle \stackrel{\text{Linearität}}{=}$$

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$. Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie =
$$\langle f(u), f(u) \rangle + 2 \langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$

= $|f(u)|^2 + 2 \langle f(u), f(v) \rangle + |f(v)|^2$

 $\stackrel{\text{Voraussetzungen}}{=} |u|^2 + 2\langle f(u), f(v) \rangle + |v|^2$

$$|f(u+v)|^2 = |u+v|^2 = \langle u+v, u+v \rangle \stackrel{\text{Linearität}}{=} \langle u+v, u+v \rangle$$

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie =
$$\langle f(u), f(u) \rangle + 2 \langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$

= $|f(u)|^2 + 2 \langle f(u), f(v) \rangle + |f(v)|^2$

 $\stackrel{\text{Voraussetzungen}}{=} |u|^2 + 2\langle f(u), f(v) \rangle + |v|^2$

Anderer Weg $|f(u+v)|^2$ auszurechnen:

$$|f(u+v)|^2 = |u+v|^2 = \langle u+v, u+v \rangle \stackrel{\text{Linearität}}{=} \langle u+v, u+v \rangle$$

Bilinearität

Symmetrie

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie
$$= \langle f(u), f(u) \rangle + 2\langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$
$$= |f(u)|^2 + 2\langle f(u), f(v) \rangle + |f(v)|^2$$

 $\stackrel{\text{Voraussetzungen}}{=} |u|^2 + 2\langle f(u), f(v) \rangle + |v|^2$

Anderer Weg $|f(u+v)|^2$ auszurechnen:

$$|f(u+v)|^2 = |u+v|^2 = \langle u+v, u+v \rangle \stackrel{\text{Linearität}}{=} \langle u+v, u+v \rangle$$

Bilinearität

$$\stackrel{\text{Symmetrie}}{=} \langle u, u \rangle + 2 \langle u, v \rangle + \langle v, v \rangle =$$

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie
$$= \langle f(u), f(u) \rangle + 2\langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$
$$= |f(u)|^2 + 2\langle f(u), f(v) \rangle + |f(v)|^2$$

 $\stackrel{\text{Voraussetzungen}}{=} |u|^2 + 2\langle f(u), f(v) \rangle + |v|^2$

Anderer Weg $|f(u+v)|^2$ auszurechnen:

$$|f(u+v)|^2 = |u+v|^2 = \langle u+v, u+v \rangle \stackrel{\text{Linearität}}{=} \langle u+v, u+v \rangle$$

Bilinearität

Symmetrie =
$$\langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle = |u|^2 + 2\langle u, v \rangle + |v|^2$$
.

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie
$$= \langle f(u), f(u) \rangle + 2\langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$
$$= |f(u)|^2 + 2\langle f(u), f(v) \rangle + |f(v)|^2$$

 $\stackrel{\text{Voraussetzungen}}{=} |u|^2 + 2\langle f(u), f(v) \rangle + |v|^2$

Anderer Weg $|f(u+v)|^2$ auszurechnen:

$$|f(u+v)|^2 = |u+v|^2 = \langle u+v, u+v \rangle \stackrel{\text{Linearität}}{=} \langle u+v, u+v \rangle$$

Bilinearität

$$\stackrel{\text{Symmetrie}}{=} \langle u, u \rangle + 2 \langle u, v \rangle + \langle v, v \rangle = |u|^2 + 2 \langle u, v \rangle + |v|^2.$$

Also, $2\langle f(u), f(v)\rangle = 2\langle u, v\rangle$.

Satz 63 Sei f ein Endomorphismus eines Euklidschen Vektorraums (V, \langle , \rangle) , so dass für jedes $v \in V$ gilt: |f(v)| = |v|. Dann gilt: f ist eine orthogonale Abbildung

In Worten: Längeerhaltende lineare Abbildungen sind orthogonal

Beweis. Z.z.: für beliebige Vektoren u, v gilt: $\langle u, v \rangle = \langle f(u), f(v) \rangle$.

Betrachte $|f(u+v)|^2$. Wir haben

$$|f(u+v)|^2 = \langle f(u+v), f(u+v) \rangle \stackrel{\text{Linearität}}{=} \langle f(u) + f(v), f(u) + f(v) \rangle$$

Bilinearität

Symmetrie
$$= \langle f(u), f(u) \rangle + 2\langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle$$
$$= |f(u)|^2 + 2\langle f(u), f(v) \rangle + |f(v)|^2$$

 $\stackrel{\text{Voraussetzungen}}{=} |u|^2 + 2\langle f(u), f(v) \rangle + |v|^2$

Anderer Weg $|f(u+v)|^2$ auszurechnen:

$$|f(u+v)|^2 = |u+v|^2 = \langle u+v, u+v \rangle \stackrel{\text{Linearität}}{=} \langle u+v, u+v \rangle$$

Bilinearität

Symmetrie =
$$\langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle = |u|^2 + 2\langle u, v \rangle + |v|^2$$
.

Also,
$$2\langle f(u), f(v)\rangle = 2\langle u, v\rangle$$
.

Satz 64

Satz 64 Betrachte \mathbb{R}^n mit dem Standard-Skalarprodukt.

Satz 64 Betrachte \mathbb{R}^n mit dem Standard-Skalarprodukt. Sei $A \in Mat(n, n)$.

Satz 64 Betrachte \mathbb{R}^n mit dem Standard-Skalarprodukt. Sei $A \in Mat(n, n)$. Dann gilt: f_A ist genau dann orthogonal, falls $A^t = A^{-1}$. Solche Matrizen heißen orthogonale Matrizen

Solche Matrizen heißen orthogonale Matrizen

Beweis $\Leftarrow=$:

Solche Matrizen heißen orthogonale Matrizen

Beweis \iff : Angenommen $A^t = A^{-1}$.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt:

$$\langle f_A(x), f_A(y) \rangle =$$

Solche Matrizen heißen orthogonale Matrizen

Beweis \iff : Angenommen $A^t = A^{-1}$. Dann gilt:

$$\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle =$$

Solche Matrizen heißen orthogonale Matrizen

Beweis \iff : Angenommen $A^t = A^{-1}$. Dann gilt:

$$\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay)$$

Solche Matrizen heißen orthogonale Matrizen

Beweis \iff : Angenommen $A^t = A^{-1}$. Dann gilt:

$$\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) =$$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow :

Solche Matrizen heißen orthogonale Matrizen

Beweis \iff : Angenommen $A^t = A^{-1}$. Dann gilt:

 $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, $f_A(x) = x^t A^t Ay =$

is orthogonal.

Beweis \implies : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist $(Ax)^t Ay$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt:

 $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, $f_A(x) = \langle x, y \rangle$. is orthogonal.

Beweis \Longrightarrow : Angenommmen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist

 $(Ax)^t Ay =$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt:

 $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist

 $(Ax)^t Ay = x^t A^t Ay$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt:

 $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, $f_A(x) = \langle x, y \rangle$. is orthogonal.

Beweis \Longrightarrow : Angenommmen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist

 $(Ax)^t Ay = x^t A^t Ay =$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, $f_A(x) = x^t A^t Ay = x^t A^t A Ay = x^t A^t Ay$

is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist

$$(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, $f_A(x) = x^t A^t Ay =$

is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist

$$(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$$
. Da $(Ax)^t Ay =$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt:

 $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist $(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$. Da $(Ax)^t Ay = \langle x, y \rangle = \langle x, y \rangle$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt:

 $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist

$$(Ax)^tAy = x^tA^tAy = \sigma_{A^tA}(x,y)$$
. Da $(Ax)^tAy = \langle x,y \rangle = \sigma_{Id}(x,y)$,

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt:

 $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist

$$(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$$
. Da $(Ax)^t Ay = \langle x, y \rangle = \sigma_{Id}(x, y)$, ist

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt:

 $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist $(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$. Da $(Ax)^t Ay = \langle x, y \rangle = \sigma_{Id}(x, y)$, ist $A^t A = Id$.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n, \mathbb{R})$:

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal,

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist $(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$. Da $(Ax)^t Ay = \langle x, y \rangle = \sigma_{Id}(x, y)$, ist $A^t A = Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} ,

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist $(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$. Da $(Ax)^t Ay = \langle x, y \rangle = \sigma_{Id}(x, y)$, ist $A^t A = Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist $(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$. Da $(Ax)^t Ay = \langle x, y \rangle = \sigma_{Id}(x, y)$, ist $A^t A = Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.**

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$. Z.z.: $(A^t)^t = (A^t)^{-1}$,

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$. Z.z.: $(A^t)^t = (A^t)^{-1}$, d.h. $A^t(A^t)^t = Id$.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$. Z.z.: $(A^t)^t = (A^t)^{-1}$, d.h. $A^t(A^t)^t = Id$. Aber $A^t(A^t)^t = A^tA = A^{-1}A = Id$,

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A,B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1}=A^t$. Z.z.: $(A^t)^t=(A^t)^{-1}$,d.h. $A^t(A^t)^t=Id$. Aber $A^t(A^t)^t=A^tA=A^{-1}A=Id$, also A^{-1} ist auch eine orthogonale Matrix.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1}=A^t$. Z.z.: $(A^t)^t=(A^t)^{-1}$,d.h. $A^t(A^t)^t=Id$. Aber $A^t(A^t)^t=A^tA=A^{-1}A=Id$, also A^{-1} ist auch eine orthogonale Matrix. Wir zeigen dass AB orthogonal ist.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1}=A^t$. Z.z.: $(A^t)^t=(A^t)^{-1}$,d.h. $A^t(A^t)^t=Id$. Aber $A^t(A^t)^t=A^tA=A^{-1}A=Id$, also A^{-1} ist auch eine orthogonale Matrix. Wir zeigen dass AB orthogonal ist. $(AB)^tAB$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$. Z.z.: $(A^t)^t = (A^t)^{-1}$,d.h. $A^t(A^t)^t = Id$. Aber $A^t(A^t)^t = A^tA = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix. Wir zeigen dass AB orthogonal ist. $(AB)^tAB =$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist $(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$. Da $(Ax)^t Ay = \langle x, y \rangle = \sigma_{Id}(x, y)$, ist $A^t A = Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$. Z.z.: $(A^t)^t = (A^t)^{-1}$,d.h. $A^t(A^t)^t = Id$. Aber $A^t(A^t)^t = A^tA = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix. Wir zeigen dass AB orthogonal ist. $(AB)^tAB = B^tA^tAB$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$. Z.z.: $(A^t)^t = (A^t)^{-1}$, d.h. $A^t(A^t)^t = Id$. Aber $A^t(A^t)^t = A^tA = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix. Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB$$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$. Z.z.: $(A^t)^t = (A^t)^{-1}$,d.h. $A^t(A^t)^t = Id$. Aber $A^t(A^t)^t = A^tA = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix. Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B$$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$, d.h. $A^t(A^t)^t = Id$. Aber

 $A^{t}(A^{t})^{t} = A^{t}A = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix. Wir zeigen dass AB orthogonal ist.

 $(AB)^{t}AB = B^{t}A^{t}AB = B^{t}A^{-1}AB = B^{t}B = B^{-1}B$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $(f_t(x), f_t(y)) = (Ax)^t (Ay) = (Ax)^t (Ay) = x^t A^t Ay = x^t Y = (Ax)^t (Ay) = (Ax)^t (Ax)^t (Ay) = (Ax)^t ($

 $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist

 $(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$. Da $(Ax)^t Ay = \langle x, y \rangle = \sigma_{Id}(x, y)$, ist $A^t A = Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal.

Beweis. Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$,d.h. $A^t(A^t)^t = Id$. Aber

 $A^{t}(A^{t})^{t} = A^{t}A = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist.

 $(AB)^{t}AB = B^{t}A^{t}AB = B^{t}A^{-1}AB = B^{t}B = B^{-1}B = Id$, also $(AB)^{t}$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $(f_t(x), f_t(y)) = (Ax)^t (Ay) = (Ax)^t (Ay) = x^t A^t Ay = x^t A^t Ay$

 $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \implies : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist $(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$. Da $(Ax)^t Ay = \langle x, y \rangle = \sigma_{Id}(x, y)$, ist $A^t A = Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal.

Beweis. Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$,d.h. $A^t(A^t)^t = Id$. Aber

 $A^t(A^t)^t = A^tA = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist. $(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B$

 $(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B = Id$, also $(AB)^t = (AB)^{-1}$.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal.

Beweis. Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$,d.h. $A^t(A^t)^t = Id$. Aber

 $A^t(A^t)^t = A^tA = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B = Id$$
, also $(AB)^t = (AB)^{-1}$.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, $f_A(x) = (Ax)^t (Ay) = (Ax)^t (Ay)^t (Ay) = (Ax)^t (Ay)^t ($

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal.

Beweis. Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$, d.h. $A^t(A^t)^t = Id$. Aber

 $A^t(A^t)^t = A^tA = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B = Id$$
, also $(AB)^t = (AB)^{-1}$.

Folgerung B

is orthogonal.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist $(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$. Da $(Ax)^t Ay = \langle x, y \rangle = \sigma_{Id}(x, y)$, ist $A^t A = Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$, d.h. $A^t(A^t)^t = Id$. Aber

 $A^{t}(A^{t})^{t} = A^{t}A = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B = Id$$
, also $(AB)^t = (AB)^{-1}$.

Folgerung B Die Determinante einer orthogonalen Matrix ist ± 1

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal.

Beweis. Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$, d.h. $A^t(A^t)^t = Id$. Aber

 $A^{t}(A^{t})^{t}=A^{t}A=A^{-1}A=Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B = Id$$
, also $(AB)^t = (AB)^{-1}$.

Folgerung B Die Determinante einer orthogonalen Matrix ist ± 1 **Beweis.**

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal.

Beweis. Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$,d.h. $A^t(A^t)^t = Id$. Aber

 $A^{t}(A^{t})^{t} = A^{t}A = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B = Id$$
, also $(AB)^t = (AB)^{-1}$.

Folgerung B Die Determinante einer orthogonalen Matrix ist ± 1 **Beweis.** $det(A^tA) = det(Id) = 1$.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal.

Beweis. Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$,d.h. $A^t(A^t)^t = Id$. Aber

 $A^t(A^t)^t = A^tA = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B = Id$$
, also $(AB)^t = (AB)^{-1}$.

Folgerung B Die Determinante einer orthogonalen Matrix ist ± 1 **Beweis.** $det(A^tA) = det(Id) = 1$. Aber

 $det(A^tA)$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal.

Beweis. Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$,d.h. $A^t(A^t)^t = Id$. Aber

 $A^{t}(A^{t})^{t} = A^{t}A = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B = Id$$
, also $(AB)^t = (AB)^{-1}$.

Folgerung B Die Determinante einer orthogonalen Matrix ist ± 1

Beweis. $det(A^tA) = det(Id) = 1$. Aber $det(A^tA) \stackrel{\text{Satz}}{=} {}^{40} det(A^t) det(A)$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal. **Beweis.** Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$,d.h. $A^t(A^t)^t = Id$. Aber

 $A^{t}(A^{t})^{t} = A^{t}A = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B = Id$$
, also $(AB)^t = (AB)^{-1}$.

Folgerung B Die Determinante einer orthogonalen Matrix ist ± 1

Beweis. $det(A^tA) = det(Id) = 1$. Aber $det(A^tA) \stackrel{\text{Satz}}{=} {}^{40} det(A^t) det(A) \stackrel{\text{Satz}}{=} {}^{43}$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal.

Beweis. Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$,d.h. $A^t(A^t)^t = Id$. Aber

 $A^{t}(A^{t})^{t} = A^{t}A = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B = Id$$
, also $(AB)^t = (AB)^{-1}$.

Folgerung B Die Determinante einer orthogonalen Matrix ist ± 1

Beweis. $det(A^tA) = det(Id) = 1$. Aber

$$det(A^tA) \stackrel{\text{Satz } 40}{=} det(A^t)det(A) \stackrel{\text{Satz } 43}{=} det(A)^2.$$

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax,Ay\rangle=\langle x,y\rangle$. Dann ist $(Ax)^tAy=x^tA^tAy=\sigma_{A^tA}(x,y)$. Da $(Ax)^tAy=\langle x,y\rangle=\sigma_{Id}(x,y)$, ist $A^tA=Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal.

Beweis. Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$, d.h. $A^t(A^t)^t = Id$. Aber

 $A^{t}(A^{t})^{t} = A^{t}A = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B = Id$$
, also $(AB)^t = (AB)^{-1}$.

Folgerung B Die Determinante einer orthogonalen Matrix ist ± 1

Beweis. $det(A^tA) = det(Id) = 1$. Aber

$$det(A^tA) \stackrel{\text{Satz } 40}{=} det(A^t) det(A) \stackrel{\text{Satz } 43}{=} det(A)^2$$
. Also, $det(A)^2 = 1$,

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \Longrightarrow : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist $(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$. Da $(Ax)^t Ay = \langle x, y \rangle = \sigma_{Id}(x, y)$, ist $A^t A = Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal.

Beweis. Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$,d.h. $A^t(A^t)^t = Id$. Aber

 $A^{t}(A^{t})^{t} = A^{t}A = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B = Id$$
, also $(AB)^t = (AB)^{-1}$.

Folgerung B Die Determinante einer orthogonalen Matrix ist ± 1

Beweis. $det(A^tA) = det(Id) = 1$. Aber $det(A^tA) \stackrel{\text{Satz } 40}{=} det(A^t) det(A) \stackrel{\text{Satz } 43}{=} det(A)^2$. Also, $det(A)^2 = 1$, und

 $det(A^{-}A) = det(A)^{-} det(A) = det(A)^{-}$. Also, $det(A)^{-} = 1$, und deswegen $det(A) = \pm 1$.

Solche Matrizen heißen orthogonale Matrizen

Beweis \Leftarrow : Angenommen $A^t = A^{-1}$. Dann gilt: $\langle f_A(x), f_A(y) \rangle = \langle Ax, Ay \rangle = (Ax)^t (Ay) = x^t A^t Ay = x^t y = \langle x, y \rangle$. Also, f_A is orthogonal.

Beweis \implies : Angenommen, $\langle Ax, Ay \rangle = \langle x, y \rangle$. Dann ist $(Ax)^t Ay = x^t A^t Ay = \sigma_{A^t A}(x, y)$. Da $(Ax)^t Ay = \langle x, y \rangle = \sigma_{Id}(x, y)$, ist $A^t A = Id$.

Folgerung A Orthogonale Matrizen bilden eine Untergruppe von $GL(n,\mathbb{R})$: Sind A, B orthogonal, so sind A^{-1} , AB auch orthogonal.

Beweis. Wir zeigen dass A^{-1} orthogonal ist. Nach Definition $A^{-1} = A^t$.

Z.z.: $(A^t)^t = (A^t)^{-1}$,d.h. $A^t(A^t)^t = Id$. Aber

 $A^{t}(A^{t})^{t} = A^{t}A = A^{-1}A = Id$, also A^{-1} ist auch eine orthogonale Matrix.

Wir zeigen dass AB orthogonal ist.

$$(AB)^t AB = B^t A^t AB = B^t A^{-1} AB = B^t B = B^{-1} B = Id$$
, also $(AB)^t = (AB)^{-1}$.

Folgerung B Die Determinante einer orthogonalen Matrix ist ± 1

Beweis. $det(A^tA) = det(Id) = 1$. Aber

 $det(A^tA) \stackrel{\text{Satz.}}{=} {}^{40} det(A^t) det(A) \stackrel{\text{Satz.}}{=} {}^{43} det(A)^2$. Also, $det(A)^2 = 1$, und deswegen $det(A) = \pm 1$.

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Wiederholung: A heißt symmetrisch, falls $A^t = A$. **Satz 65** Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist.

Wiederholung: A heißt symmetrisch, falls $A^t = A$. **Satz 65** Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Wiederholung: A heißt symmetrisch, falls $A^t = A$. **Satz 65** Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen) **Bemerkung** Da $O^t = O^{-1}$, ist auch O^tAO diagonal.

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t = O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra - Ohne Beweis;

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t = O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie.

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t = O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie. Jedes $P \in \mathbb{C}[x]$ hat mind. eine Nullstelle.

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t = O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie. Jedes $P \in \mathbb{C}[x]$ hat mind. eine Nullstelle.

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t = O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie. Jedes $P \in \mathbb{C}[x]$ hat mind. eine Nullstelle.

HA 1

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t = O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie. Jedes $P \in \mathbb{C}[x]$ hat mind. eine Nullstelle.

HA 1 Sei O eine orthogonale Matrix,

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t = O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie. Jedes $P \in \mathbb{C}[x]$ hat mind. eine Nullstelle.

HA 1 Sei O eine orthogonale Matrix, A eine symmetrische Matrix.

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t = O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie. Jedes $P \in \mathbb{C}[x]$ hat mind. eine Nullstelle.

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t = O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie. Jedes $P \in \mathbb{C}[x]$ hat mind. eine Nullstelle.

HA 1 Sei O eine orthogonale Matrix, A eine symmetrische Matrix. Dann gilt: $O^{-1}AO$ ist symmetrisch.

Beweis:

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t = O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie. Jedes $P \in \mathbb{C}[x]$ hat mind. eine Nullstelle.

HA 1 Sei O eine orthogonale Matrix, A eine symmetrische Matrix. Dann gilt: $O^{-1}AO$ ist symmetrisch.

Beweis: $\begin{cases} O^{-1} = O^t \\ A^t = A \end{cases}$

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t=O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie. Jedes $P \in \mathbb{C}[x]$ hat mind. eine Nullstelle.

Beweis:
$$\begin{cases} O^{-1} = O^t \\ A^t = A \end{cases} \implies (O^{-1}AO)^t =$$

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t=O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie. Jedes $P \in \mathbb{C}[x]$ hat mind. eine Nullstelle.

Beweis:
$$\begin{cases} O^{-1} = O^t \\ A^t = A \end{cases} \implies (O^{-1}AO)^t = (O^tAO)^t = (O^tAO)^t$$

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t=O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie. Jedes $P \in \mathbb{C}[x]$ hat mind. eine Nullstelle.

Beweis:
$$\begin{cases} o^{-1} = o^t \\ A^t = A \end{cases} \implies (o^{-1}Ao)^t = (o^tAo)^t = o^tA^t(o^t)^t = o^tA^t(o^t$$

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t = O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie. Jedes $P \in \mathbb{C}[x]$ hat mind. eine Nullstelle.

Beweis:
$$\left\{ \begin{array}{ll} O^{-1} = O^t \\ A^t = A \end{array} \right. \implies (O^{-1}AO)^t = (O^tAO)^t = O^tA^t(O^t)^t = O^{-1}AO,$$

Wiederholung: A heißt symmetrisch, falls $A^t = A$.

Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O sodass $O^{-1}AO$ diagonal ist. (Symmetrische Matrizen über $\mathbb R$ sind diagonalisierbar mit Hilfe von ortogonalen Transformationen)

Bemerkung Da $O^t = O^{-1}$, ist auch O^tAO diagonal. Also, die Matrizen von symmetrischen Bilinearform auf reellen Vektorräumen sind diagonalisierbar mit Hilfe von Basiswechsel

Hauptsatz der Algebra – Ohne Beweis; Beweis in Vorlesung Funktionentheorie. Jedes $P \in \mathbb{C}[x]$ hat mind. eine Nullstelle.

Beweis:
$$\begin{cases} O^{-1} = O^t \\ A^t = A \end{cases} \implies (O^{-1}AO)^t = (O^tAO)^t = O^tA^t(O^t)^t = O^{-1}AO,$$

HA 2 Mind. 1 Eigenwert von (symmetrischen) A ist reell. Wiederholung – Vorl. Analysis

HA 2 *Mind.* 1 *Eigenwert von (symmetrischen)* A ist reell. **Wiederholung – Vorl. Analysis** Für z = a + ib ist $\bar{z} = a - ib$.

HA 2 *Mind.* 1 *Eigenwert von (symmetrischen) A ist reell.* **Wiederholung – Vorl. Analysis** Für z = a + ib ist $\bar{z} = a - ib$. Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

HA 2 *Mind.* 1 Eigenwert von (symmetrischen) A ist reell. **Wiederholung – Vorl. Analysis** Für z = a + ib ist $\bar{z} = a - ib$. Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen: $\overline{z_1 + z_2} =$ **HA 2** Mind. 1 Eigenwert von (symmetrischen) A ist reell. **Wiederholung – Vorl. Analysis** Für z=a+ib ist $\bar{z}=a-ib$. Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen: $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$, **HA 2** Mind. 1 Eigenwert von (symmetrischen) A ist reell. **Wiederholung – Vorl. Analysis** Für z=a+ib ist $\bar{z}=a-ib$. Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen: $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}$ **HA 2** *Mind.* 1 *Eigenwert von (symmetrischen) A ist reell.* **Wiederholung – Vorl. Analysis** Für z = a + ib ist $\bar{z} = a - ib$. Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen: $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, $\overline{z_1 \cdot z_2} =$

HA 2 *Mind.* 1 *Eigenwert von (symmetrischen) A ist reell.* **Wiederholung – Vorl. Analysis** Für z = a + ib ist $\bar{z} = a - ib$. Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen: $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$.

HA 2 Mind. 1 Eigenwert von (symmetrischen) A ist reell. **Wiederholung – Vorl. Analysis** Für z=a+ib ist $\bar{z}=a-ib$. Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen: $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$ (Konjugieren ist ein Autoisomorphismus des Körpers $\mathbb C$) **HA 2** Mind. 1 Eigenwert von (symmetrischen) A ist reell. **Wiederholung – Vorl. Analysis** Für z=a+ib ist $\bar{z}=a-ib$. Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen: $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$ (Konjugieren ist ein Autoisomorphismus des Körpers $\mathbb C$)

Daraus folgt $\overline{Av} = \overline{A}\overline{v}$

HA 2 *Mind.* 1 *Eigenwert von (symmetrischen) A ist reell.* **Wiederholung – Vorl. Analysis** Für z = a + ib ist $\bar{z} = a - ib$. Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

 $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$

(Konjugieren <u>ist</u> ein Autoisomorphismus des Körpers $\mathbb C$)

Daraus folgt $\overline{Av} = \overline{A}\overline{v}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

HA 2 Mind. 1 Eigenwert von (symmetrischen) A ist reell. **Wiederholung – Vorl. Analysis** Für z=a+ib ist $\bar{z}=a-ib$. Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

 $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2},\ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$

(Konjugieren ist ein Autoisomorphismus des Körpers \mathbb{C}) Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$,

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

 $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$

(Konjugieren ist ein Autoisomorphismus des Körpers \mathbb{C})

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$:

HA 2 *Mind.* 1 *Eigenwert von (symmetrischen)* A ist reell. **Wiederholung – Vorl. Analysis** Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

 $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$

(Konjugieren ist ein Autoisomorphismus des Körpers \mathbb{C}) Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v,

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

 $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$

(Konjugieren <u>ist</u> ein Autoisomorphismus des Körpers $\mathbb{C})$

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

 $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$

(Konjugieren ist ein Autoisomorphismus des Körpers C)

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2:

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

 $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$

(Konjugieren ist ein Autoisomorphismus des Körpers C)

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$$

(Konjugieren ist ein Autoisomorphismus des Körpers \mathbb{C})

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A und den zugehörigen (vielleicht, komplexen) Eigenvektor v.

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$$

(Konjugieren ist ein Autoisomorphismus des Körpers \mathbb{C})

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A und den zugehörigen (vielleicht, komplexen) Eigenvektor ν . (Existenz – Haupsatz der Algebra).

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$$

(Konjugieren ist ein Autoisomorphismus des Körpers C)

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A und den zugehörigen (vielleicht, komplexen) Eigenvektor ν . (Existenz – Haupsatz der Algebra).

Dann ist \bar{v} auch ein Eigenvektor mit Eigenwert $\bar{\mu}$.

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$$

(Konjugieren ist ein Autoisomorphismus des Körpers C)

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A und den zugehörigen (vielleicht, komplexen) Eigenvektor ν . (Existenz – Haupsatz der Algebra).

Dann ist \bar{v} auch ein Eigenvektor mit Eigenwert $\bar{\mu}$.

Dann gilt $\bar{\mu}\bar{v}^t v =$

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$$

(Konjugieren ist ein Autoisomorphismus des Körpers C)

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A und den zugehörigen (vielleicht, komplexen) Eigenvektor ν . (Existenz – Haupsatz der Algebra).

Dann ist \bar{v} auch ein Eigenvektor mit Eigenwert $\bar{\mu}$.

Dann gilt $\bar{\mu}\bar{v}^t v = \bar{\mu}\bar{v}^t v =$

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$$

(Konjugieren ist ein Autoisomorphismus des Körpers C)

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A und den zugehörigen (vielleicht, komplexen) Eigenvektor ν . (Existenz – Haupsatz der Algebra).

Dann ist \bar{v} auch ein Eigenvektor mit Eigenwert $\bar{\mu}$.

Dann gilt $\bar{\mu}\bar{v}^tv=\overline{\mu}\bar{v}^tv=\overline{(Av)^t}v=(A\bar{v})^tv$

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}.$$

(Konjugieren ist ein Autoisomorphismus des Körpers C)

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A und den zugehörigen (vielleicht, komplexen) Eigenvektor ν . (Existenz – Haupsatz der Algebra).

Dann ist \bar{v} auch ein Eigenvektor mit Eigenwert $\bar{\mu}$.

Dann gilt $\bar{\mu}\bar{v}^tv = \overline{\mu v}^tv = \overline{(Av)^t}v = (A\bar{v})^tv = \bar{v}^tAv$

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$$

(Konjugieren ist ein Autoisomorphismus des Körpers C)

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A und den zugehörigen (vielleicht, komplexen) Eigenvektor ν . (Existenz – Haupsatz der Algebra).

Dann ist \bar{v} auch ein Eigenvektor mit Eigenwert $\bar{\mu}$.

Dann gilt $\bar{\mu}\bar{v}^tv = \overline{\mu v}^tv = \overline{(Av)^t}v = (A\bar{v})^tv = \bar{v}^tAv = \mu\bar{v}^tv$.

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$$

(Konjugieren ist ein Autoisomorphismus des Körpers C)

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A und den zugehörigen (vielleicht, komplexen) Eigenvektor ν . (Existenz – Haupsatz der Algebra).

Dann ist \bar{v} auch ein Eigenvektor mit Eigenwert $\bar{\mu}$.

Dann gilt $\bar{\mu}\bar{v}^tv = \overline{\mu v}^tv = \overline{(Av)^t}v = (A\bar{v})^tv = \bar{v}^tAv = \mu\bar{v}^tv$.

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$$

(Konjugieren ist ein Autoisomorphismus des Körpers C)

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A und den zugehörigen (vielleicht, komplexen) Eigenvektor ν . (Existenz – Haupsatz der Algebra).

Dann ist \bar{v} auch ein Eigenvektor mit Eigenwert $\bar{\mu}$.

Dann gilt $\bar{\mu}\bar{v}^tv = \overline{\mu v}^tv = \overline{(Av)}^tv = (A\bar{v})^tv = \bar{v}^tAv = \mu\bar{v}^tv$.

Also,
$$\bar{\mu}(|v_1|^2 + ... + |v_n|^2)$$

HA 2 Mind. 1 Eigenwert von (symmetrischen) A ist reell.

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2},\ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$$

(Konjugieren ist ein Autoisomorphismus des Körpers C)

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A und den zugehörigen (vielleicht, komplexen) Eigenvektor ν . (Existenz – Haupsatz der Algebra).

Dann ist \bar{v} auch ein Eigenvektor mit Eigenwert $\bar{\mu}$.

Dann gilt $\bar{\mu}\bar{v}^tv = \overline{\mu v}^tv = \overline{(Av)^t}v = (A\bar{v})^tv = \bar{v}^tAv = \mu\bar{v}^tv$.

Also,
$$\bar{\mu}(|v_1|^2 + ... + |v_n|^2) = \mu(|v_1|^2 + ... + |v_n|^2)$$
,

HA 2 Mind. 1 Eigenwert von (symmetrischen) A ist reell.

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$$

(Konjugieren ist ein Autoisomorphismus des Körpers \mathbb{C})

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A und den zugehörigen (vielleicht, komplexen) Eigenvektor ν . (Existenz – Haupsatz der Algebra).

Dann ist \bar{v} auch ein Eigenvektor mit Eigenwert $\bar{\mu}$.

Dann gilt
$$\bar{\mu}\bar{v}^tv = \overline{\mu v}^tv = \overline{(Av)}^tv = (A\bar{v})^tv = \bar{v}^tAv = \mu\bar{v}^tv$$
.

Also,
$$\bar{\mu}(|v_1|^2 + ... + |v_n|^2) = \mu(|v_1|^2 + ... + |v_n|^2)$$
, und deswegen $\bar{\mu} = \mu$,

HA 2 Mind. 1 Eigenwert von (symmetrischen) A ist reell.

Wiederholung – Vorl. Analysis Für z = a + ib ist $\bar{z} = a - ib$.

Wir erinnern zunächst an folgende Eigenschaften komplexer Zahlen:

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}.$$

(Konjugieren ist ein Autoisomorphismus des Körpers C)

Daraus folgt $\overline{Av} = \overline{Av}$, wobei $A \in Mat(n, n, \mathbb{C})$ und $v \in \mathbb{C}^n$.

Daraus folgt: sind die Einträge von A reell, und ist $Av = \mu v$, so ist $A\overline{v} = \overline{\mu}\overline{v}$: Ist μ ein Eigenwert von reellen A mit Eigenvektor v, so ist $\overline{\mu}$ auch ein Eigenwert von A mit Eigenvektor \overline{v} .

Beweis von HA 2: Betrachte eine (vielleicht, komplexe) Nullstelle μ von \aleph_A und den zugehörigen (vielleicht, komplexen) Eigenvektor ν . (Existenz – Haupsatz der Algebra).

Dann ist \bar{v} auch ein Eigenvektor mit Eigenwert $\bar{\mu}$.

Dann gilt
$$\bar{\mu}\bar{v}^tv = \overline{\mu v}^tv = \overline{(Av)}^tv = (A\bar{v})^tv = \bar{v}^tAv = \mu\bar{v}^tv$$
.

Also,
$$\bar{\mu}(|v_1|^2 + ... + |v_n|^2) = \mu(|v_1|^2 + ... + |v_n|^2)$$
, und deswegen $\bar{\mu} = \mu$,

Beweis von Satz 65:

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$.

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\longrightarrow} \frac{v}{|v|}$

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\rightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\longrightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\longrightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz —

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\longrightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61:

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\longrightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$.

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\longrightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\longrightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1$

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\longrightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1 = O^{-1}Av$

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\longrightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1 = O^{-1}Av = \lambda_1 O^{-1}v$

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\rightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1 = O^{-1}Av = \lambda_1 O^{-1}v = \lambda_1 e_1$,

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\longrightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1 = O^{-1}Av = \lambda_1O^{-1}v = \lambda_1e_1$, also $O^{-1}AO$

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\mathrm{Ersetze}}{\to} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1 = O^{-1}Av = \lambda_1 O^{-1}v = \lambda_1 e_1$, also $O^{-1}AO = \begin{pmatrix} \lambda_1 & * & * \\ A_{n-1} \end{pmatrix} \stackrel{\mathrm{HA}}{=} 1$

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\rightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1 = O^{-1}Av = \lambda_1O^{-1}v = \lambda_1e_1$, also $O^{-1}AO = \begin{pmatrix} \lambda_1 & * & * \\ A_{n-1} \end{pmatrix} \stackrel{\text{HA}}{=} 1 \begin{pmatrix} \lambda_1 & * \\ A_{n-1} \end{pmatrix}$

Wir wiederholen die Prozedur:

Wir wiederholen die Prozedur: Es gibt ein reellen Eigenvektor v von A_{n-1} ,

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\longrightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1 = O^{-1}Av = \lambda_1 O^{-1}v = \lambda_1 e_1$, also $O^{-1}AO = \begin{pmatrix} \lambda_1 & * & * \\ A_{n-1} \end{pmatrix} \stackrel{\text{HA}}{=} 1 \begin{pmatrix} \lambda_1 & * & * \\ A_{n-1} \end{pmatrix}$, wobei A_{n-1} eine symmetrische Matrix ist.

Wir wiederholen die Prozedur: Es gibt ein reellen Eigenvektor v von A_{n-1} , und deswegen eine $(n-1\times n-1)$ orthogonale Matrix O_{n-1} sodass $O_{n-1}^{-1}A_{n-1}O_{n-1}=$

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\mathrm{Ersetze}}{\to} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1 = O^{-1}Av = \lambda_1 O^{-1}v = \lambda_1 e_1$, also $O^{-1}AO = \begin{pmatrix} \lambda_1 & * \\ A_{n-1} \end{pmatrix} \stackrel{\mathrm{HA}}{=} \begin{pmatrix} \lambda_1 & * \\ A_{n-1} \end{pmatrix}$, wobei A_{n-1} eine symmetrische Matrix ist.

Wir wiederholen die Prozedur: Es gibt ein reellen Eigenvektor v von A_{n-1} , und deswegen eine $(n-1\times n-1)$ orthogonale Matrix O_{n-1} sodass $O_{n-1}^{-1}A_{n-1}O_{n-1}=\begin{pmatrix}\lambda_2\\A_{n-2}\end{pmatrix}$, wobei A_{n-2} symmetrisch ist

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\rightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1 = O^{-1}Av = \lambda_1 O^{-1}v = \lambda_1 e_1$, also $O^{-1}AO = \begin{pmatrix} \lambda_1 & * \\ A_{n-1} \end{pmatrix} \stackrel{\text{HA 1}}{=} \begin{pmatrix} \lambda_1 & \\ A_{n-1} \end{pmatrix}$, wobei A_{n-1} eine symmetrische Matrix ist. Wir wiederholen die Prozedur: Es gibt ein reellen Eigenvektor v von A_{n-1} , und deswegen eine $(n-1\times n-1)$ orthogonale Matrix O_{n-1} sodass $O_{n-1}^{-1}A_{n-1}O_{n-1}=\begin{pmatrix}\lambda_2&&\\&A_{n-2}\end{pmatrix}$, wobei A_{n-2} symmetrisch ist. Dann gilt $\begin{pmatrix} 1 & & \\ & O^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & & \\ & A_{n-1} \end{pmatrix} \begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix}$

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\to} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1 = O^{-1}Av = \lambda_1 O^{-1}v = \lambda_1 e_1$, also $O^{-1}AO = \begin{pmatrix} \lambda_1 & * \\ A_{n-1} \end{pmatrix} \stackrel{\text{HA 1}}{=} \begin{pmatrix} \lambda_1 & \\ A_{n-1} \end{pmatrix}$, wobei A_{n-1} eine symmetrische Matrix ist. Wir wiederholen die Prozedur: Es gibt ein reellen Eigenvektor v von A_{n-1} , und deswegen eine $(n-1\times n-1)$ orthogonale Matrix O_{n-1} sodass $O_{n-1}^{-1}A_{n-1}O_{n-1}=\begin{pmatrix}\lambda_2&&\\&A_{n-2}\end{pmatrix}$, wobei A_{n-2} symmetrisch ist. Dann

$$\begin{array}{ll} A_{n-1}, \text{ und deswegen eine } (n-1\times n-1) \text{ orthogonale Matrix } O_{n-1} \\ \text{sodass } O_{n-1}^{-1}A_{n-1}O_{n-1} = \begin{pmatrix} \lambda_2 & \\ & A_{n-2} \end{pmatrix}, \text{ wobei } A_{n-2} \text{ symmetrisch ist. Dann gilt } \begin{pmatrix} 1 & \\ & O_{n-1}^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & \\ & A_{n-1} \end{pmatrix} \begin{pmatrix} 1 & \\ & O_{n-1} \end{pmatrix} = \begin{pmatrix} \lambda_1 & \\ & \lambda_2 & \\ & & A_{n-2} \end{pmatrix}, \text{ also} \\ \begin{pmatrix} 1 & \\ & O_{n-1}^{-1} \end{pmatrix} \underbrace{O^{-1}AO \begin{pmatrix} 1 & \\ & O_{n-1} \end{pmatrix}} \\ \end{array}$$

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\to} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1 = O^{-1}Av = \lambda_1 O^{-1}v = \lambda_1 e_1$, also $O^{-1}AO = \begin{pmatrix} \lambda_1 & * \\ A_{n-1} \end{pmatrix} \stackrel{\text{HA 1}}{=} \begin{pmatrix} \lambda_1 & \\ A_{n-1} \end{pmatrix}$, wobei A_{n-1} eine symmetrische Matrix ist. Wir wiederholen die Prozedur: Es gibt ein reellen Eigenvektor v von A_{n-1} , und deswegen eine $(n-1 \times n-1)$ orthogonale Matrix O_{n-1} sodass $O_{n-1}^{-1}A_{n-1}O_{n-1}=\begin{pmatrix}\lambda_2&&\\&A_{n-2}\end{pmatrix}$, wobei A_{n-2} symmetrisch ist. Dann gilt $\begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & & \\ & A_{n-1} \end{pmatrix} \begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \Delta \end{pmatrix}$, also $\left(\begin{smallmatrix}1&&\\&O_{n-1}^{-1}\end{smallmatrix}\right){\scriptstyle {\it O}^{-1}{\it AO}}\left(\begin{smallmatrix}1&&\\&O_{n-1}\end{smallmatrix}\right)=$ $\begin{pmatrix} 1 & & \\ & O_{n-1}^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & & \\ & A_{n-1} \end{pmatrix} \begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix}$

Wir wiederholen die Prozedur: Es gibt ein reellen Eigenvektor v von A_{n-1} , und deswegen eine $(n-1\times n-1)$ orthogonale Matrix O_{n-1} sodass $O_{n-1}^{-1}A_{n-1}O_{n-1}=\begin{pmatrix} \lambda_2 & \\ & A_{n-2} \end{pmatrix}$, wobei A_{n-2} symmetrisch ist. Dann gilt $\begin{pmatrix} 1 & \\ & O_{n-1}^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & \\ & A_{n-1} \end{pmatrix} \begin{pmatrix} 1 & \\ & O_{n-1} \end{pmatrix} = \begin{pmatrix} \lambda_1 & \\ & \lambda_2 & \\ & & A_{n-2} \end{pmatrix}$, also $\begin{pmatrix} 1 & \\ & O_{n-1}^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & \\ & & A_{n-1} \end{pmatrix} \begin{pmatrix} 1 & \\ & & O_{n-1} \end{pmatrix} = \begin{pmatrix} \lambda_1 & \\ & & \lambda_2 & \\ & & & A_{n-2} \end{pmatrix}$, u.s.w. (Da O_{n-1} orthogonal ist, sind $\begin{pmatrix} 1 & \\ & O_{n-1} \end{pmatrix}$, $\begin{pmatrix} 1 & \\ & & O_{n-1} \end{pmatrix}$

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\to} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1 = O^{-1}Av = \lambda_1 O^{-1}v = \lambda_1 e_1$, also $O^{-1}AO = \begin{pmatrix} \lambda_1 & * \\ A_{n-1} \end{pmatrix} \stackrel{\text{HA 1}}{=} \begin{pmatrix} \lambda_1 & \\ A_{n-1} \end{pmatrix}$, wobei A_{n-1} eine symmetrische Matrix ist. Wir wiederholen die Prozedur: Es gibt ein reellen Eigenvektor v von A_{n-1} , und deswegen eine $(n-1 \times n-1)$ orthogonale Matrix O_{n-1} sodass $O_{n-1}^{-1}A_{n-1}O_{n-1}=\begin{pmatrix}\lambda_2&&\\&A_{n-2}\end{pmatrix}$, wobei A_{n-2} symmetrisch ist. Dann gilt $\begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & & \\ & A_{n-1} \end{pmatrix} \begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_n \end{pmatrix}$, also $\begin{pmatrix} 1 & & & \\ & O_{n-1}^{-1} \end{pmatrix} O^{-1}AO \begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix} =$ $\begin{pmatrix} 1 & & \\ & O_{n-1}^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & & \\ & A_{n-1} \end{pmatrix} \begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & A_{n-2} \end{pmatrix}, \text{ u.s.w. } \left(\text{Da } O_{n-1} \right)$ orhtogonal ist, sind $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ auch orthogonal, und deswegen auch $O_{n-1}O_{n-1}$

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\to} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ..., o_n$ finden sodass $o_1 = v$. Die Matrix O sodass $Oe_i = o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1 = O^{-1}Av = \lambda_1 O^{-1}v = \lambda_1 e_1$, also $O^{-1}AO = \begin{pmatrix} \lambda_1 & * \\ A_{n-1} \end{pmatrix} \stackrel{\text{HA 1}}{=} \begin{pmatrix} \lambda_1 & \\ A_{n-1} \end{pmatrix}$, wobei A_{n-1} eine symmetrische Matrix ist. Wir wiederholen die Prozedur: Es gibt ein reellen Eigenvektor v von A_{n-1} , und deswegen eine $(n-1 \times n-1)$ orthogonale Matrix O_{n-1} sodass $O_{n-1}^{-1}A_{n-1}O_{n-1}=\begin{pmatrix}\lambda_2&&\\&A_{n-2}\end{pmatrix}$, wobei A_{n-2} symmetrisch ist. Dann gilt $\begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & & \\ & A_{n-1} \end{pmatrix} \begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_n \end{pmatrix}$, also $\begin{pmatrix} 1 & & \\ & O_{n-1}^{-1} \end{pmatrix} O^{-1}AO \begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix} =$ $\begin{pmatrix} 1 & & \\ & O_{n-1}^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & & \\ & A_{n-1} \end{pmatrix} \begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & A_{n-2} \end{pmatrix}, \text{ u.s.w. } \left(\text{Da } O_{n-1} \right)$ orhtogonal ist, sind $\begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix}$, $\begin{pmatrix} 1 & & \\ & O_{n-1} \end{pmatrix}$ auch orthogonal, und deswegen auch $O_{n-1}O$, $(O_{n-1}O)^{-1}$ auch orthogonal.

Beweis von Satz 65: Nach HA 2 gibt es ein $v \in \mathbb{R}^n$, $v \neq \vec{0}$ mit $Av = \lambda_1 v$. OBdA ist |v| = 1, sonst $v \stackrel{\text{Ersetze}}{\rightarrow} \frac{v}{|v|}$. Betrachte eine orthogonale Matrix O sodass $Oe_1 = v$. (Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1, ...$, finder godess $o_1, ...$).

(Existenz — Satz 61: Man kann eine orthonormierte Basis $o_1,...,o_n$ finden sodass $o_1=v$. Die Matrix O sodass $Oe_i=o_i$ ist orthogonal.) Dann ist $O^{-1}AOe_1=O^{-1}Av=\lambda_1O^{-1}v=\lambda_1e_1$, also $O^{-1}AO=\begin{pmatrix} \lambda_1 & * & * \\ & A_{n-1} \end{pmatrix}\stackrel{\mathrm{HA}}{=} \begin{pmatrix} \lambda_1 & * & * \\ & A_{n-1} \end{pmatrix}$, wobei A_{n-1} eine symmetrische

Matrix ist.

Wir wiederholen die Prozedur: Es gibt ein reellen Eigenvektor v von A_{n-1} , und deswegen eine $(n-1\times n-1)$ orthogonale Matrix O_{n-1} sodass $O_{n-1}^{-1}A_{n-1}O_{n-1}=\begin{pmatrix}\lambda_2\\A_{n-2}\end{pmatrix}$, wobei A_{n-2} symmetrisch ist. Dann gilt $\begin{pmatrix}1\\O_{n-1}^{-1}\end{pmatrix}\begin{pmatrix}\lambda_1\\A_{n-1}\end{pmatrix}\begin{pmatrix}1\\O_{n-1}\end{pmatrix}=\begin{pmatrix}\lambda_1\\O_{n-1}\end{pmatrix}=\begin{pmatrix}\lambda_1\\\lambda_2\\A_{n-2}\end{pmatrix}$, also $\begin{pmatrix}1\\O_{n-1}^{-1}\end{pmatrix}\begin{pmatrix}0^{-1}AO\begin{pmatrix}1\\O_{n-1}\end{pmatrix}=\begin{pmatrix}1\\O_{n-1}\end{pmatrix}=\begin{pmatrix}\lambda_1\\A_{n-2}\end{pmatrix}$, u.s.w. (Da O_{n-1} orthogonal ist, sind $\begin{pmatrix}1\\O_{n-1}\end{pmatrix},\begin{pmatrix}1\\O_{n-1}\end{pmatrix}=\begin{pmatrix}1\\O_{n-1}\end{pmatrix}$ auch orthogonal, und deswegen

auch $O_{n-1}O$, $(O_{n-1}O)^{-1}$ auch orthogonal. Nach n-1 Schritte bekommen wir die Aussage.

Wiederholung - Satz 65

Wiederholung – Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O, sodass $O^{-1}AO$ diagonal ist.

Wiederholung – Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O, sodass $O^{-1}AO$ diagonal ist. **Folgerung**

Wiederholung – Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O, sodass $O^{-1}AO$ diagonal ist. **Folgerung** Ist A symmetrisch, so gibt eine eine Matrix $B \in GL(n, \mathbb{R})$, **Wiederholung – Satz 65** Ist A symmetrisch, so gibt eine eine orthogonale Matrix O, sodass $O^{-1}AO$ diagonal ist.

Folgerung Ist A symmetrisch, so gibt eine eine Matrix $B \in GL(n, \mathbb{R})$, sodass B^tAB die Form

Wiederholung – Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O, sodass $O^{-1}AO$ diagonal ist.

Folgerung Ist A symmetrisch, so gibt eine eine Matrix $B \in GL(n, \mathbb{R})$, sodass B^tAB die Form

```
(*)

(*)
```

Wiederholung – Satz 65 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O, sodass $O^{-1}AO$ diagonal ist.

Folgerung Ist A symmetrisch, so gibt eine eine Matrix $B \in GL(n, \mathbb{R})$, sodass B^tAB die Form

hat, wobei auf der Diagonale r Stuck "+1" und s Stuck "-1" steht.

Beweis der Folgerung.

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} {}^{o^t}$$

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} {}^{O^t}O^tAO$$

$$O^{-1}AO \stackrel{\text{Weil }O^{-1}=O^t}{=} O^tAO = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \text{ ist.}$$

Beweis der Folgerung. Nach Satz 65 gibt es eine Matrix O sodass $O^{-1}AO \stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} O^t AO = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & & \lambda_n \end{pmatrix}$ ist. OBdA können wir annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind,

Beweis der Folgerung. Nach Satz 65 gibt es eine Matrix O sodass $O^{-1}AO \overset{\mathrm{Weil}}{=} \overset{O^{-1}}{=} O^t AO = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$ ist. OBdA können wir annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind,

Beweis der Folgerung. Nach Satz 65 gibt es eine Matrix O sodass $O^{-1}AO \overset{\mathrm{Weil}}{=} \overset{O^{-1}}{=} O^t AO = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$ ist. OBdA können wir annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$:

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} \stackrel{O^t}{=} O^tAO = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{pmatrix}$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} \stackrel{O^t}{=} O^tAO = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{pmatrix}$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ij}$ ist auch eine Orthogonalmatrix,

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=}\stackrel{O^{-1}}{=}{}^{O^t}O^tAO=\left(egin{matrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{matrix}
ight)$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ij}$ ist auch eine Orthogonalmatrix, weil $(OE_{ii})^t OE_{ij}$

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=}\stackrel{O^{-1}}{=}{}^{O^t}O^tAO=\left(egin{matrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{matrix}
ight)$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ij}$ ist auch eine Orthogonalmatrix, weil

$$(OE_{ij})^tOE_{ij} =$$

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} \stackrel{O^t}{=} O^tAO = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{pmatrix}$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ii}$ ist auch eine Orthogonalmatrix, weil

$$(OE_{ij})^tOE_{ij} = E_{ij} \underbrace{O^tO}_{Id} E_{ij}$$

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} \stackrel{O^t}{O}^tAO = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{pmatrix}$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ij}$ ist auch eine Orthogonalmatrix, weil $(OE_{ij})^t OE_{ij} = E_{ij} \underbrace{O^t O}_{Id} E_{ij} \overset{\text{Weil}}{=} \overset{(E_{ij})^2 = Id}{=}$

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} \stackrel{O^t}{=} O^tAO = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ij}$ ist auch eine Orthogonalmatrix, weil $(OE_{ij})^t OE_{ij} = E_{ij} \underbrace{O^t OE_{ij}}_{Id} \stackrel{\text{Weil}}{=} \underbrace{(E_{ij})^2 = Id}_{Id} Id.$

Dann ist
$$(O')^{-1}AO'$$

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} \stackrel{O^t}{=} O^tAO = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1} = ... \lambda_n = 0$: wir zeigen, dass wir λ_i und λ_i umstellen, wenn wir Omit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ii}$ ist auch eine Orthogonalmatrix, weil

$$(OE_{ij})^t OE_{ij} = E_{ij} \underbrace{O^t O}_{Id} E_{ij} \stackrel{\text{Weil } (E_{ij})^2 = Id}{=} Id.$$
Dann ist $(O')^{-1} AO' \stackrel{\text{Weil } (O')^{-1} = (O')^t}{=} (O')^t AO'$

Dann ist
$$(O')^{-1}AO' \stackrel{\text{Weil } (O')^{-1} = (O')^t}{=} (O')^t AO'$$

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} \stackrel{O^t}{=} O^tAO = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{pmatrix}$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ij}$ ist auch eine Orthogonalmatrix, weil

$$(OE_{ij})^t OE_{ij} = E_{ij} \underbrace{O^t O}_{Id} E_{ij} \stackrel{\text{Weil } (E_{ij})^2 = Id}{=} Id.$$

Dann ist $(O')^{-1}AO' \stackrel{\text{Weil } (O')^{-1} = (O')^t}{=} (O')^t AO' = (E_{ij})^t O^t AOE_{ij} = (O')^t AO' =$

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=}\stackrel{O^{-1}}{=}{}^{O^t}O^tAO=\left(egin{matrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{matrix}
ight)$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ij}$ ist auch eine Orthogonalmatrix, weil

$$(OE_{ij})^tOE_{ij} = E_{ij}\underbrace{O^tO}_{Id}E_{ij} \stackrel{\mathrm{Weil}}{=} \underbrace{(E_{ij})^2}_{=} \stackrel{id}{=} Id.$$

Dann ist $(O')^{-1}AO' \stackrel{\text{Weil } (O')^{-1} = (O')^t}{=} (O')^t AO' = (E_{ij})^t O^t AOE_{ij} =$

$$E_{ij} \begin{pmatrix} \ddots & & & & & & \\ & \lambda_i & & & & & \\ & & \ddots & & & \\ & & & \lambda_j & & \\ & & & & \ddots \end{pmatrix} E_{ij} \stackrel{\text{Ausrechnen}}{=} \begin{pmatrix} \ddots & & & & \\ & \lambda_j & & & \\ & & \ddots & & \\ & & & \lambda_i & & \\ & & & & \ddots \end{pmatrix}$$

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=}\stackrel{O^{-1}}{=}{}^{O^t}O^tAO=\left(egin{matrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{matrix}
ight)$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ij}$ ist auch eine Orthogonalmatrix, weil

$$(OE_{ij})^tOE_{ij} = E_{ij} \underbrace{O^tO}_{Id} E_{ij} \stackrel{\text{Weil } (E_{ij})^2 = Id}{=} Id.$$

Dann ist
$$(O')^{-1}AO' \stackrel{\text{Weil } (O')^{-1} = (O')^t}{=} (O')^t AO' = (E_{ij})^t O^t AOE_{ij} = (O')^t AO' = (O')^t AOE_{ij} = (O')^t AO' = (O')^t AOE_{ij} = (O')^t AO' = (O$$

$$E_{ij} \begin{pmatrix} \ddots & & & & & & \\ & & \lambda_i & & & & \\ & & & \ddots & & \\ & & & & \lambda_j & & \\ & & & & \ddots \end{pmatrix} E_{ij} \stackrel{\textbf{Ausrechnen}}{=} \begin{pmatrix} \ddots & & & & & \\ & & \lambda_j & & & \\ & & & \ddots & & \\ & & & & \lambda_i & & \\ & & & & & \ddots \end{pmatrix}$$

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} \stackrel{O^t}{=} O^tAO = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{pmatrix}$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ij}$ ist auch eine Orthogonalmatrix, weil $(OE_{ij})^t OE_{ij} = E_{ij} \underbrace{O^t O}_{Id} E_{ij} \stackrel{\mathrm{Weil}}{=} \stackrel{(E_{ij})^2}{=} {}^{ld}$ Id.

Dann ist
$$(O')^{-1}AO' \stackrel{\text{Weil } (O')^{-1}}{=} = (O')^t (O')^t AO' = (E_{ij})^t O^t AOE_{ij} = E_{ij} \begin{pmatrix} \ddots & & & \\ & \ddots & & \\ & & \ddots & \\ & & & \lambda_j & \\ & & & & \lambda_i \end{pmatrix}$$

Beispiel für "Ausrechnen"

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} \stackrel{O^t}{=} O^tAO = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{pmatrix}$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ij}$ ist auch eine Orthogonalmatrix, weil $(OE_{ij})^t OE_{ij} = E_{ij} \underbrace{O^t O}_{Id} E_{ij} \stackrel{\mathrm{Weil}}{=} \stackrel{(E_{ij})^2}{=} {}^{ld}$ Id.

Dann ist
$$(O')^{-1}AO' \stackrel{\text{Weil } (O')^{-1}}{=} = (O')^t (O')^t AO' = (E_{ij})^t O^t AOE_{ij} = E_{ij} \begin{pmatrix} \ddots & & & \\ & \ddots & & \\ & & \ddots & \\ & & & \lambda_j & \\ & & & & \lambda_i \end{pmatrix}$$

Beispiel für "Ausrechnen"

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} \stackrel{O^t}{=} O^tAO = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{pmatrix}$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ij}$ ist auch eine Orthogonalmatrix, weil $(OE_{ij})^t OE_{ij} = E_{ij} \underbrace{O^t O}_{Id} E_{ij} \stackrel{\mathrm{Weil}}{=} \stackrel{(E_{ij})^2}{=} {}^{ld}$ Id.

Dann ist
$$(O')^{-1}AO' \stackrel{\text{Weil } (O')^{-1}}{=} = (O')^t (O')^t AO' = (E_{ij})^t O^t AOE_{ij} = E_{ij} \begin{pmatrix} \ddots & & & \\ & \ddots & & \\ & & \ddots & \\ & & & \lambda_j & \\ & & & & \lambda_i \end{pmatrix}$$

Beispiel für "Ausrechnen"

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=}\stackrel{O^{-1}}{=}{}^{O^t}O^tAO=\left(egin{array}{ccc} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{array}
ight)$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ij}$ ist auch eine Orthogonalmatrix, weil $\sup_{i \in I} (E_{ii})^2 = Id$

$$(OE_{ij})^tOE_{ij} = E_{ij} \underbrace{O^tO}_{Id} E_{ij} \stackrel{\mathrm{Weil}}{=} \stackrel{(E_{ij})^2 = Id}{=} Id.$$

 $\mathsf{Dann} \; \mathsf{ist} \; (\mathit{O}')^{-1} \mathit{AO}' \overset{\mathrm{Weil} \; (\mathit{O}')^{-1} \; = \; (\mathit{O}')^t}{=} \; (\mathit{O}')^t \mathit{AO}' = (\mathit{E}_{ij})^t \mathit{O}^t \mathit{AOE}_{ij} =$

$$E_{ij} \begin{pmatrix} \ddots & & & & & & \\ & \lambda_i & & & & & \\ & & \ddots & & & \\ & & & \lambda_j & & \\ & & & \ddots & \\ & & & & \lambda_i & \\ & & & & \ddots \end{pmatrix}$$

Beispiel für "Ausrechnen": $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \lambda_1 & \\ & \lambda_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$O^{-1}AO\stackrel{\mathrm{Weil}}{=} \stackrel{O^{-1}}{=} \stackrel{O^t}{=} O^tAO = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
 ist. OBdA können wir

annehmen, dass $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_r,...,\lambda_{r+s}$ negativ sind, und $\lambda_{r+s+1}=...\lambda_n=0$: wir zeigen, dass wir λ_i und λ_j umstellen, wenn wir O mit geeigneten (orthogonalen) O' ersetzen.

Tatsächlich, die Matrix $O' := OE_{ij}$ ist auch eine Orthogonalmatrix, weil

$$(OE_{ij})^tOE_{ij} = E_{ij} \underbrace{O^tO}_{Id} E_{ij} \stackrel{\mathrm{Weil}}{=} \underbrace{(E_{ij})^2}_{=} Id.$$

 $\mathsf{Dann} \; \mathsf{ist} \; (\mathit{O}')^{-1} \mathit{AO}' \overset{\mathrm{Weil} \; (\mathit{O}')^{-1} \; = \; (\mathit{O}')^t}{=} \; (\mathit{O}')^t \mathit{AO}' = (\mathit{E}_{ij})^t \mathit{O}^t \mathit{AOE}_{ij} =$

$$E_{ij} \begin{pmatrix} \ddots & & & & & & \\ & & \lambda_i & & & & \\ & & & \ddots & & \\ & & & & \lambda_j & & \\ & & & & \ddots \end{pmatrix} E_{ij} \stackrel{\text{Ausrechnen}}{=} \begin{pmatrix} \ddots & & & & \\ & & \lambda_j & & & \\ & & & \ddots & & \\ & & & & \lambda_i & & \\ & & & & & \ddots \end{pmatrix}$$

Beispiel für "Ausrechnen": $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ & \lambda_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \lambda_2 \\ & \lambda_1 \end{pmatrix}$

Also, O^tAO

Also,
$$O^tAO = \begin{pmatrix} \lambda_1 & & & & & & & \\ & \ddots & & & & & & \\ & & \lambda_r & & & & & \\ & & & \lambda_{r+1} & & & & \\ & & & & \lambda_s & & \\ & & & & \lambda_s & & \\ & & & & \ddots & \\ & & & & & 0 \end{pmatrix} := \Lambda$$

ist, wobei $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_{r+1},...,\lambda_{r+s}$ negativ sind. Wir "normieren" alle λ_i :

ist, wobei $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_{r+1},...,\lambda_{r+s}$ negativ sind. Wir "normieren" alle λ_i : für die Matrix

$$\mathsf{V} := \begin{pmatrix} \frac{1}{\sqrt{\lambda_1}} & & & \\ & \frac{1}{\sqrt{\lambda_r}} & & & \\ & & \frac{1}{\sqrt{-\lambda_{r+1}}} & & \\ & & & \frac{1}{\sqrt{-\lambda_{r+1}}} & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{pmatrix}$$

ist, wobei $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_{r+1},...,\lambda_{r+s}$ negativ sind. Wir "normieren" alle λ_i : für die Matrix

$$\mathsf{V} := \begin{pmatrix} \frac{1}{\sqrt{\lambda_1}} & & & \\ & \frac{1}{\sqrt{\lambda_r}} & & & \\ & & \frac{1}{\sqrt{-\lambda_{r+1}}} & & \\ & & & \ddots & \\ & & & \frac{1}{\sqrt{-\lambda_{r+s}}} & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} \in \mathit{GL}(n,\mathbb{R})$$

ist, wobei $\lambda_1, ..., \lambda_r$ positiv sind, $\lambda_{r+1}, ..., \lambda_{r+s}$ negativ sind.

Wir "normieren" alle
$$\lambda_i$$
: für die Matrix
$$N := \begin{pmatrix} \frac{1}{\sqrt{\lambda_1}} & & & & \\ & \frac{1}{\sqrt{\lambda_1}} & & & & \\ & & \frac{1}{\sqrt{-\lambda_{r+1}}} & & & \\ & & & \frac{1}{\sqrt{-\lambda_{r+s}}} & & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} \in \mathit{GL}(n,\mathbb{R})$$
 gilt N^tO^tAON

ist, wobei $\lambda_1,...,\lambda_r$ positiv sind, $\lambda_{r+1},...,\lambda_{r+s}$ negativ sind. Wir "normieren" alle λ_i : für die Matrix

$$\mathsf{N} := \begin{pmatrix} \frac{1}{\sqrt{\lambda_1}} & & & \\ & \frac{1}{\sqrt{\lambda_r}} & & \\ & & \frac{1}{\sqrt{-\lambda_{r+1}}} & & \\ & & & \frac{1}{\sqrt{-\lambda_{r+s}}} & \\ & & & & 1 \end{pmatrix} \in \mathit{GL}(n,\mathbb{R})$$
 gilt $\underbrace{N^t O^t}_{} A \underbrace{ON}_{} = N^t \Lambda N =$

Wir "normieren" alle
$$\lambda_i$$
: für die Matrix
$$N := \begin{pmatrix} \frac{1}{\sqrt{\lambda_1}} & & & & \\ & \frac{1}{\sqrt{\lambda_1}} & & & & \\ & & \frac{1}{\sqrt{-\lambda_{r+1}}} & & & \\ & & & \frac{1}{\sqrt{-\lambda_{r+1}}} & & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} \in \mathit{GL}(n,\mathbb{R})$$
 gilt $\underbrace{N^tO^t}_{} A \underbrace{ON}_{} = N^t \wedge N = (*)$

Wir "normieren" alle λ_i : für die Matrix

Bemerkung

Wir "normieren" alle
$$\lambda_i$$
: für die Matrix
$$N:=\begin{pmatrix} \frac{1}{\sqrt{\lambda_1}} & & & & \\ & \frac{1}{\sqrt{\lambda_1}} & & & & \\ & & \frac{1}{\sqrt{-\lambda_{r+1}}} & & & \\ & & & \frac{1}{\sqrt{-\lambda_{r+1}}} & & \\ & & & \frac{1}{\sqrt{-\lambda_{r+s}}} & 1 \end{pmatrix} \in \textit{GL}(n,\mathbb{R})$$
 gilt N^tO^tA $ON_r=N^t\Lambda N=(*)$

Bemerkung $T = ON \in GL(n, \mathbb{R})$,

Wir "normieren" alle
$$\lambda_i$$
: für die Matrix
$$N:= \begin{pmatrix} \frac{1}{\sqrt{\lambda_1}} & & & & \\ & \frac{1}{\sqrt{\lambda_1}} & & & & \\ & & \frac{1}{\sqrt{-\lambda_{r+1}}} & & & \\ & & & \frac{1}{\sqrt{-\lambda_{r+1}}} & & \\ & & & \frac{1}{\sqrt{-\lambda_{r+5}}} & \\ & & & & 1 \end{pmatrix} \in \mathit{GL}(n,\mathbb{R})$$
 gilt $\underbrace{N^tO^tAON}_{} = N^t\Lambda N = (*)$

Bemerkung
$$T=ON\in GL(n,\mathbb{R}),$$
 da $O\in GL(n,\mathbb{R})$

Wir "normieren" alle
$$\lambda_i$$
: für die Matrix
$$N := \begin{bmatrix} \frac{1}{\sqrt{\lambda_1}} & & & & \\ & \frac{1}{\sqrt{\lambda_1}} & & & \\ & & \frac{1}{\sqrt{-\lambda_{r+1}}} & & & \\ & & & \frac{1}{\sqrt{-\lambda_{r+1}}} & & \\ & & & \ddots & \\ & & & & \frac{1}{\sqrt{-\lambda_{r+s}}} & \\ & & & & 1 \end{bmatrix} \in \mathit{GL}(n,\mathbb{R})$$
 gilt $\underbrace{N^t O^t A ON}_{} = N^t \Lambda N = (*)$

Bemerkung $T = ON \in GL(n,\mathbb{R})$, da $O \in GL(n,\mathbb{R})$, und $N \in GL(n,\mathbb{R})$.

Ziel war

Ziel war (Ende der Volesung 21)

Ziel war (Ende der Volesung 21): Symmetrische Bilinearformen untersuchen.

Ziel war (Ende der Volesung 21): Symmetrische Bilinearformen untersuchen.

Methode: Suche eine Basis sodass die Matrix "einfach" ist.

Ziel war (Ende der Volesung 21): Symmetrische Bilinearformen untersuchen.

Methode: Suche eine Basis sodass die Matrix "einfach" ist.

Methode Umformulieren:

Ziel war (Ende der Volesung 21): Symmetrische Bilinearformen untersuchen.

Methode: Suche eine Basis sodass die Matrix "einfach" ist.

Methode Umformulieren: In welche "einfachste" Form kann man eine symmetrische Matrix \boldsymbol{A}

Ziel war (Ende der Volesung 21): Symmetrische Bilinearformen untersuchen.

Methode: Suche eine Basis sodass die Matrix "einfach" ist.

Methode Umformulieren: In welche "einfachste" Form kann man eine symmetrische Matrix A mit Hilfe der Transformation $A \mapsto T^t A T$,

Ziel war (Ende der Volesung 21): Symmetrische Bilinearformen untersuchen.

Methode: Suche eine Basis sodass die Matrix "einfach" ist.

Methode Umformulieren: In welche "einfachste" Form kann man eine symmetrische Matrix A mit Hilfe der Transformation $A \mapsto T^t A T$, wobei $T \in GL(n, \mathbb{K})$

Ziel war (Ende der Volesung 21): Symmetrische Bilinearformen untersuchen.

Methode: Suche eine Basis sodass die Matrix "einfach" ist.

Methode Umformulieren: In welche "einfachste" Form kann man eine symmetrische Matrix A mit Hilfe der Transformation $A \mapsto T^t A T$, wobei $T \in GL(n, \mathbb{K})$ bringen?

Ziel war (Ende der Volesung 21): Symmetrische Bilinearformen untersuchen.

Methode: Suche eine Basis sodass die Matrix "einfach" ist.

Methode Umformulieren: In welche "einfachste" Form kann man eine symmetrische Matrix A mit Hilfe der Transformation $A \mapsto T^t A T$, wobei $T \in GL(n, \mathbb{K})$ bringen?

Satz 65/ Folgerung geben die Antwort,

Ziel war (Ende der Volesung 21): Symmetrische Bilinearformen untersuchen.

Methode: Suche eine Basis sodass die Matrix "einfach" ist.

Methode Umformulieren: In welche "einfachste" Form kann man eine symmetrische Matrix A mit Hilfe der Transformation $A \mapsto T^t A T$, wobei $T \in GL(n, \mathbb{K})$ bringen?

Satz 65/ Folgerung geben die Antwort, falls $\mathbb{K}=\mathbb{R}$ ist: Man kann die Matrix A in die Form

Ziel war (Ende der Volesung 21): Symmetrische Bilinearformen untersuchen.

Methode: Suche eine Basis sodass die Matrix "einfach" ist.

Methode Umformulieren: In welche "einfachste" Form kann man eine symmetrische Matrix A mit Hilfe der Transformation $A \mapsto T^t A T$, wobei $T \in GL(n, \mathbb{K})$ bringen?

Satz 65/ Folgerung geben die Antwort, falls $\mathbb{K}=\mathbb{R}$ ist: Man kann die Matrix A in die Form

bringen, wobei auf der Diagonale r Stuck "+1" und s Stuck "-1" steht

Ziel war (Ende der Volesung 21): Symmetrische Bilinearformen untersuchen.

Methode: Suche eine Basis sodass die Matrix "einfach" ist.

Methode Umformulieren: In welche "einfachste" Form kann man eine symmetrische Matrix A mit Hilfe der Transformation $A \mapsto T^t A T$, wobei $T \in GL(n, \mathbb{K})$ bringen?

Satz 65/ Folgerung geben die Antwort, falls $\mathbb{K}=\mathbb{R}$ ist: Man kann die Matrix A in die Form

bringen, wobei auf der Diagonale r Stuck "+1" und s Stuck "-1" steht.

Frage: Kann man noch besser machen?

Ziel war (Ende der Volesung 21): Symmetrische Bilinearformen untersuchen.

Methode: Suche eine Basis sodass die Matrix "einfach" ist.

Methode Umformulieren: In welche "einfachste" Form kann man eine symmetrische Matrix A mit Hilfe der Transformation $A \mapsto T^t A T$, wobei $T \in GL(n, \mathbb{K})$ bringen?

Satz 65/ Folgerung geben die Antwort, falls $\mathbb{K}=\mathbb{R}$ ist: Man kann die Matrix A in die Form

bringen, wobei auf der Diagonale r Stuck "+1" und s Stuck "-1" steht.

Frage: Kann man noch besser machen?

Antwort - Nein - Trägheitsatz von Silvester

Satz 66 Sei V ein Vektorraum über \mathbb{R} mit einer symmetrischen Bilinearform σ ,

Satz 66 Sei V ein Vektorraum über \mathbb{R} mit einer symmetrischen Bilinearform σ , und sei $(b_1,...,b_n)$ eine Basis von V

Satz 66 Sei V ein Vektorraum über \mathbb{R} mit einer symmetrischen Bilinearform σ , und sei $(b_1,...,b_n)$ eine Basis von V sodass in der Basis

die Matrix von σ wie folgt ist:

Satz 66 Sei V ein Vektorraum über \mathbb{R} mit einer symmetrischen Bilinearform σ , und sei $(b_1,...,b_n)$ eine Basis von V sodass in der Basis

die Matrix von σ wie folgt ist:

Satz 66 Sei V ein Vektorraum über \mathbb{R} mit einer symmetrischen Bilinearform σ , und sei $(b_1,...,b_n)$ eine Basis von V sodass in der Basis

die Matrix von σ wie folgt ist: auf der Diagonale r Stuck "+1" und s Stuck "-1" steht.

Satz 66 Sei V ein Vektorraum über \mathbb{R} mit einer symmetrischen Bilinearform σ , und sei $(b_1, ..., b_n)$ eine Basis von V sodass in der Basis

Satz 66 Sei V ein Vektorraum über \mathbb{R} mit einer symmetrischen Bilinearform σ , und sei $(b_1,...,b_n)$ eine Basis von V sodass in der Basis

die Matrix von σ wie folgt ist: $\begin{pmatrix} 1 & & & & & \\ & & & 1 & & & \\ & & & & -1 & & \\ & & & & & 0 \end{pmatrix}, \text{ wobei}$

Satz 66 Sei V ein Vektorraum über \mathbb{R} mit einer symmetrischen Bilinearform σ , und sei $(b_1,...,b_n)$ eine Basis von V sodass in der Basis

die Matrix von σ wie folgt ist:

auf der Diagonale r Stuck "+1" und s Stuck "-1" steht. Dann sind die Zahlen r und s eindeutig durch die Bilinearform σ festgelegt. Insbesondere gilt:

r =

Satz 66 Sei V ein Vektorraum über \mathbb{R} mit einer symmetrischen Bilinearform σ , und sei $(b_1,...,b_n)$ eine Basis von V sodass in der Basis

die Matrix von σ wie folgt ist:

auf der Diagonale r Stuck "+1" und s Stuck "-1" steht. Dann sind die Zahlen r und s eindeutig durch die Bilinearform σ festgelegt. Insbesondere gilt:

 $r = \max\{\dim(W) \ s.d. \ W \subset V$

Satz 66 Sei V ein Vektorraum über \mathbb{R} mit einer symmetrischen Bilinearform σ , und sei $(b_1,...,b_n)$ eine Basis von V sodass in der Basis

die Matrix von σ wie folgt ist:

auf der Diagonale r Stuck "+1" und s Stuck "-1" steht. Dann sind die Zahlen r und s eindeutig durch die Bilinearform σ festgelegt. Insbesondere gilt:

 $r = \max\{\dim(W) \text{ s.d. } W \subset V \text{ Untervektor raum mit } \sigma(w, w) > 0 \text{ für alle } w \in W, w \neq 0 \text{ ist}\},$

Satz 66 Sei V ein Vektorraum über \mathbb{R} mit einer symmetrischen Bilinearform σ , und sei $(b_1,...,b_n)$ eine Basis von V sodass in der Basis

die Matrix von σ wie folgt ist:

```
r = \max\{\dim(W) \text{ s.d. } W \subset V \text{ Untervektor raum mit } \sigma(w, w) > 0 \text{ für alle } w \in W, w \neq 0 \text{ ist}\}, 
s = \max\{\dim(W) \text{ s.d. } W \subset V \text{ untervektor raum mit } \sigma(w, w) > 0 \text{ für alle } w \in W, w \neq 0 \text{ ist}\},
```

Satz 66 Sei V ein Vektorraum über \mathbb{R} mit einer symmetrischen Bilinearform σ , und sei $(b_1,...,b_n)$ eine Basis von V sodass in der Basis

die Matrix von σ wie folgt ist:

```
r = \max\{\dim(W) \text{ s.d. } W \subset V \text{ Untervektor raum mit } \sigma(w, w) > 0 \text{ für alle } w \in W, w \neq 0 \text{ ist}\}, 
s = \max\{\dim(W) \text{ s.d. } W \subset V \text{ Untervektor raum mit } \sigma(w, w) < 0 \text{ für alle } w \in W, w \neq 0 \text{ ist}\}. 
(*)
```

Satz 66 Sei V ein Vektorraum über \mathbb{R} mit einer symmetrischen Bilinearform σ , und sei $(b_1,...,b_n)$ eine Basis von V sodass in der Basis

die Matrix von σ wie folgt ist:

$$r = \max\{\dim(W) \text{ s.d. } W \subset V \text{ Untervektor raum mit } \sigma(w, w) > 0 \text{ für alle } w \in W, w \neq 0 \text{ ist}\},$$

$$s = \max\{\dim(W) \text{ s.d. } W \subset V \text{ Untervektor raum mit } \sigma(w, w) < 0 \text{ für alle } w \in W, w \neq 0 \text{ ist}\}.$$

$$\{**$$